Math, asked by gulabsinghrawat95605, 6 months ago

in in triangle abc , €B=90. if A=30, find a is value of of sin a cos b + cos a sin b .
answer please ​

Answers

Answered by rpinfinityuniverse
0

answer is root 3 upon 2

hipe it helps you

Answered by payalchatterje
1

Answer:

The value of of sin a cos b + cos a sin b is  \frac{ \sqrt{3} }{2}

Step-by-step explanation:

Given angle B is 90° and angle A is 30°.

Now we want to find value of  \sin(a)  \cos(b)  +  \cos(a)  \sin(b)

We are putting a=90° and b=30°,

So, \sin(a)  \cos(b)  +  \cos(a)  \sin(b)  = sin {90}^{o}  \cos( {30}^{o} )  +  \cos( {90}^{o} )  \sin( {30}^{o} )

We know,

 \sin( {90}^{o} )  = 1 \\  \cos( {90}^{o} )  = 0 \\  \sin( {30}^{o} )  =  \frac{1}{2}  \\  \cos( {30}^{o} )  =  \frac{ \sqrt{3} }{2}

So, sin {90}^{o}  \cos( {30}^{o} )  +  \cos( {90}^{o} )  \sin( {30}^{o} )  = 1 \times  \frac{ \sqrt{3} }{2}  + 0 \times  \frac{1}{2}  =   \frac{ \sqrt{3} }{2}  + 0 =  \frac{ \sqrt{3} }{2}

Therefore value of sin a cos b + cos a sin b is  \frac{ \sqrt{3} }{2}

Another method,

We know,sin a \:  cos b + cos a \:  sin b = sin(a+b)

Here a=90° and b=30°.

So,Sin(a+b)=Sin(90°+30°)=Sin120°= \frac{ \sqrt{3} }{2}

Similar questions