Physics, asked by KaranAulakh4398, 10 months ago

In interference, I_(max)/I_(min) = alpha, find. (a) A_(max)/A_(min) (b) A_1/A_2 (c) I_1/I_2

Answers

Answered by NirmalPandya
0
  1. A_(max)/ A_(min)= ∝
  2. A_1/A_2= \frac{\sqrt{ \alpha} +1}{\sqrt{ \alpha} -1}
  3. I_1/ I_2=(\frac{\sqrt{ \alpha} +1}{\sqrt{ \alpha} -1})^{2}

1. We know that for interference, I is directly proportional to A² .

I ∝ A²

A ∝ √I

A_max/A_min = \sqrt{\frac{I_{max}}{I_{min} }

A_max/A_min= \sqrt{\alpha }  

2. A_1/A_2 can be found from the above relation in 1.

\frac{I_{max} }{I_{min}} = \frac{(\sqrt{I_1}  + \sqrt{I_2})^2}{(\sqrt{I_1}  - \sqrt{I_2})^2}

\frac{(\sqrt{\frac{I_1}{I_2}) }  + 1)^2}{(\sqrt{\frac{I_1}{I_2}} - 1)^2  }  

   \alpha = \frac{(({\frac{A_1}{A_2}) }  + 1)^2}{(({\frac{A_1}{A_2}}) - 1)^2  }  

On simplifying we get ,

A_1/A_2= \frac{\sqrt{ \alpha} +1}{\sqrt{ \alpha} -1}

3. For I_1/ I_2,

\frac{I_1}{I_2}  =( \frac{A_1}{A_2} )^{2}

in 2, we have already found the value of A_1/A_2.

Substituting that value we get,

I_1/I_2 = (\frac{\sqrt{ \alpha} +1}{\sqrt{ \alpha} -1})^{2}

Similar questions