Physics, asked by nehatomar3876, 10 months ago

In interference, I_(max)/I_(min) = alpha , find (a) A_(max)/A_(min) (b) A_1/A_2 (c)I_1/I_2 .

Answers

Answered by Anonymous
0

Answer:

MATHS

The maximum value of (cosα

1

).(cosα

2

)...(cosα

n

), under the restrictions 0≤α

1

2

,...α

n

2

π

and (cotα

1

).(cotα

2

)...(cotα

n

)=1 is :

December 27, 2019avatar

Nilraj Hirani

SHARE

ANSWER

The given relation implies that

$$\displaystyle \prod _{ i=1 }^{ n }{ \cos{ \alpha }_{ i }= } \prod _{ i=1 }^{ n }{ \sin{ \alpha }_{ i } }$$

$$\therefore\quad \displaystyle\prod _{ i }^{ n }{ { \cos }^{ 2 }\alpha _{ i }=\prod _{ i=1 }^{ n }{ \cos{ \alpha }_{ i }{ \sin\alpha }_{ i } } = } \prod _{ i=1 }^{ n }{ \left( \dfrac { \sin{ \alpha }_{ i } }{ 2 } \right) }$$

Where $$0\le { \alpha }_{ i }'<\dfrac { \pi }{ 2 }$$ or $$0\le { 2\alpha }_{ i }\le \pi$$.

$$\therefore\quad \displaystyle\prod _{ i=1 }^{ n } \cos ^{ 2 }{ { \alpha }_{ i } } =\dfrac { 1 }{ { 2 }^{ n } } $$ as max value of $$\sin { \theta } =1$$

Or $$\displaystyle\prod _{ i=1 }^{ n } \cos { { \alpha }_{ i } } =\dfrac { 1 }{ { 2 }^\cfrac{ n}{2 } } $$

Explanation:

Similar questions