In ∆leABC, 3sinA+4cosB=6, 4sinB+3cosA=2 then show that the maximum value of S=(1-a)(1-b)+(1-alpha)(1-beta)is 8
Answers
Answered by
81
square the first and second equation..
9sin^2A+16cos^2+12SinAcosB=36
16sin^2B+9cos^B+12SinBCosA=4
add both terms
9(cos^A+sin^A)+16(cos^A+sin^B)+12(SinAcosB+CosASinB)=40..........1)
we know that
Sin^A+cos^A=1
also,SinACosB+Cos ASinB=Sin(A+B)
put this value in equation 1)
9+16+12Sin(A+B)=40
26+12Sin(A+B)=40
12Sin(A+B)=14....2)
also,we know,ABC=180
so
angle(A+B+C)=180
A+B=180-C......3)
Put this value in equation 2)
12Sin(180-C)=14
12sinC=14
sinc=7/6
using this take out A,B and C and put this in given eqaution...
u will get 8 as answer
Similar questions