Math, asked by pranavaraspure, 3 months ago

In ∆LMN, L = 60°, M = 30°, LM = 15 cm. Find LN and Mn​

Answers

Answered by bhagyashreechowdhury
0

Given:

In ∆LMN, L = 60°, M = 30°, LM = 15 cm.

To find:

LN and MN

Solution:

In Δ LMN, we have

∠L + ∠M + ∠N = 180° ↔ [Angle sum property]

⇒ 60° + 30° + ∠N = 180°

⇒ ∠N = 180° - 90°

∠N = 90°

Now, by using the trigonometric ratios of a right-angled triangle, we will find the values of LN and MN,

Finding the value of LN:

Here,

θ = 30°

Perpendicular = LN

Hypotenuse = LM

sin\:30\° = \frac{perpendicular}{hypotenuse}

\implies sin\:30\° = \frac{LN}{LM}

\implies \frac{1}{2} = \frac{LN}{15}

\implies LN = \frac{15}{2}

\implies \boxed{\bold{LN = 7.5\:cm}}

Finding the value of MN:

Here,

θ = 60°

Perpendicular = MN

Hypotenuse = LM

sin\:60\° = \frac{perpendicular}{hypotenuse}

\implies sin\:60\° = \frac{MN}{LM}

\implies \frac{\sqrt{3} }{2} = \frac{MN}{15}

\implies MN = \frac{15\sqrt{3} }{2}

\implies \boxed{\bold{MN = 7.5\sqrt{3} \:cm}}

-----------------------------------------------------------------------------------------

Also View:

If the right angled LMN angle m =90 if l(lm) =12cmand l(ln)=20cm,find the length of seg mn

brainly.in/question/2601853

In the given figure, LMN is a right-angled triangle in which m=90°, P and Q are midpoints of LM and LN respectively.If LM=9 cm,MN=12 cm and LN=15 cm,find:

the perimeter of trapezium MNQP

the area of trapezium MNQP​

brainly.in/question/13571182

In triangle LMN, if LM = 10 cm and angle LNM = 90 degree, angle LMN = 30 degree; then NM = ?

brainly.in/question/8723276

Similar questions