In ∆LMN, L = 60°, M = 30°, LM = 15 cm. Find LN and Mn
Answers
Given:
In ∆LMN, L = 60°, M = 30°, LM = 15 cm.
To find:
LN and MN
Solution:
In Δ LMN, we have
∠L + ∠M + ∠N = 180° ↔ [Angle sum property]
⇒ 60° + 30° + ∠N = 180°
⇒ ∠N = 180° - 90°
⇒ ∠N = 90°
Now, by using the trigonometric ratios of a right-angled triangle, we will find the values of LN and MN,
Finding the value of LN:
Here,
θ = 30°
Perpendicular = LN
Hypotenuse = LM
∴
Finding the value of MN:
Here,
θ = 60°
Perpendicular = MN
Hypotenuse = LM
∴
-----------------------------------------------------------------------------------------
Also View:
If the right angled LMN angle m =90 if l(lm) =12cmand l(ln)=20cm,find the length of seg mn
brainly.in/question/2601853
In the given figure, LMN is a right-angled triangle in which m=90°, P and Q are midpoints of LM and LN respectively.If LM=9 cm,MN=12 cm and LN=15 cm,find:
the perimeter of trapezium MNQP
the area of trapezium MNQP
brainly.in/question/13571182
In triangle LMN, if LM = 10 cm and angle LNM = 90 degree, angle LMN = 30 degree; then NM = ?
brainly.in/question/8723276