in
long division methods pls solve y cube-8 by y-2
Answers
Given : f(x) = y^3 - 8
Given : g(x) = y - 2
y - 2) y^3 + 0y^2 + 0y - 8 (y^2 + 2y + 4
y^3 - 2y^2
-------------------------------
2y^2 - 8
2y^2 - 4y
--------------------------------
4y - 8
4y - 8
----------------------------------
0.
Therefore, Quotient = y^2 + 2y + 4 and remainder = 0.
Hope it helps!
Given : f(x) = y^3 - 8
Given : g(x) = y - 2
y - 2) y^3 + 0y^2 + 0y - 8 (y^2 + 2y + 4
y^3 - 2y^2
-------------------------------
2y^2 - 8
2y^2 - 4y
--------------------------------
4y - 8
4y - 8
----------------------------------
0.