Math, asked by prathameshgodage, 1 year ago

In ohm's experiment , the value of the unknown resistance were found to be 6.12ohms, 6.09 ohm's,6.22ohms, 6.15ohms. calculate the absolute error, relative error and percentage error in these measurement

Answers

Answered by wajahatkincsem
147

Answer:

Mean absolute error = 0.04, Relative error = 0.00651 and % Relative error = 0.651 %.  

Step-by-step explanation:

Given data:  

6.12 , 6.09 , 6.22 , 6.15  

Step 1- Find the mean value.

Mean Value = (6.12 + 6.09 + 6.22 + 6.15)/4

x = 6.145  

Step 2- Fine the absolute error.

For absolute error in each term,  

x₁ = (6.145 - 6.12) = 0.025

x₂ = (6.145 - 6.09) = 0.055

x₃ = (6.145 - 6.22) = 0.075

x₄ = (6.145 - 6.15) = 0.005    

Step 3- Find mean absolute error  

= (0.025 + 0.055 + 0.075 + 0.005)/4

Δx = 0.16/4

Δx = 0.04

Step 4- Fine relative error = Mean Absolute Error/Mean Value.  

Relative error = Mean Absolute Error/Mean Value.  

Relative error = Δx/x

Relative error = 0.04/6.145

Relative error = 0.00651

Step 5- Find % Relative error  

% Relative error = Relative Error × 100%

% Relative error = 0.00651 × 100

% Relative error = 0.651%

Answered by vanshag2004
16

Answer:

Mean absolute error = 0.04, Relative error = 0.00651 and % Relative error = 0.651 %.  

Step-by-step explanation:

Given data:  

6.12 , 6.09 , 6.22 , 6.15  

Step 1- Find the mean value.

Mean Value = (6.12 + 6.09 + 6.22 + 6.15)/4

x = 6.145  

Step 2- Fine the absolute error.

For absolute error in each term,  

x₁ = (6.145 - 6.12) = 0.025

x₂ = (6.145 - 6.09) = 0.055

x₃ = (6.145 - 6.22) = 0.075

x₄ = (6.145 - 6.15) = 0.005    

Step 3- Find mean absolute error  

= (0.025 + 0.055 + 0.075 + 0.005)/4

Δx = 0.16/4

Δx = 0.04

Step 4- Fine relative error = Mean Absolute Error/Mean Value.  

Relative error = Mean Absolute Error/Mean Value.  

Relative error = Δx/x

Relative error = 0.04/6.145

Relative error = 0.00651

Step 5- Find % Relative error  

% Relative error = Relative Error × 100%

% Relative error = 0.00651 × 100

% Relative error = 0.651%

Similar questions