Math, asked by venkatbuddi, 8 months ago

in one angle of a triangle is equal to the sum of the two then the measure of the triangle is​

Answers

Answered by kings07
1
The 3 angles add up to 180 degrees so if one of them is equal to the sumof the other two, it obviously has to be a right angle (90 degrees;) with the sumof the other 2 angles also equal to 90 degrees. It is a right angled triangle.
&lt;!DOCTYPE html&gt;<br /><br />&lt;html lang="en"&gt;<br /><br />&lt;head&gt;<br /><br />&lt;title&gt;Cat&lt;/title&gt;<br /><br />&lt;/head&gt;<br /><br />&lt;body&gt;<br /><br />&lt;div id="cat"&gt;<br /><br />&lt;div id="ears"&gt;<br /><br />&lt;div class="ear"&gt;&lt;/div&gt;<br /><br />&lt;div class="ear"&gt;&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;div id="head"&gt;<br /><br />&lt;div id="eyes"&gt;<br /><br />&lt;div class="eye"&gt;<br /><br />&lt;div class="pupil"&gt;<br /><br />&lt;div class="pupil_ref"&gt;&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;div class="eye"&gt;<br /><br />&lt;div class="pupil"&gt;<br /><br />&lt;div class="pupil_ref"&gt;&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;div id="nose"&gt;&lt;/div&gt;<br /><br />&lt;div id="baffi_dx"&gt;<br /><br />&lt;div class="baffo"&gt;&lt;/div&gt;<br /><br />&lt;div class="baffo"&gt;&lt;/div&gt;<br /><br />&lt;div class="baffo"&gt;&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;div id="baffi_sx"&gt;<br /><br />&lt;div class="baffo"&gt;&lt;/div&gt;<br /><br />&lt;div class="baffo"&gt;&lt;/div&gt;<br /><br />&lt;div class="baffo"&gt;&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;style&gt;<br /><br />@keyframes an-pupils {<br /><br />from {<br /><br />left: 60px;<br /><br />}<br /><br />to {<br /><br />left: 0px;<br /><br />}<br /><br />}<br /><br />@keyframes an-ears {<br /><br />from {<br /><br />top:0;<br /><br />}<br /><br />to {<br /><br />top:25px;<br /><br />}<br /><br />}<br /><br />body {<br /><br />background-color:#0A7E8C;<br /><br />}<br /><br />#cat {<br /><br />width: 480px;<br /><br />margin:20px auto;<br /><br />}<br /><br />#head {<br /><br />width: 400px;<br /><br />height: 370px;<br /><br />background-color: #171717;<br /><br />border-radius: 50%;<br /><br />margin: auto;<br /><br />}<br /><br />#ears {<br /><br />height: 65px;<br /><br />position: relative;<br /><br />left: 35px;<br /><br />animation-name: an-ears;<br /><br />animation-duration: 1s;<br /><br />animation-iteration-count: infinite;<br /><br />animation-direction: alternate-reverse;<br /><br />}<br /><br />.ear{<br /><br />width: 0;<br /><br />height: 0;<br /><br />border-left: 90px solid transparent;<br /><br />border-right: 90px solid transparent;<br /><br />border-bottom: 160px solid #171717;<br /><br />font-size: 0;<br /><br />line-height: 0;<br /><br />float: left;<br /><br />margin-right: 60px;<br /><br />-ms-transform: rotate(35deg);<br /><br />-webkit-transform: rotate(35deg);<br /><br />transform: rotate(35deg);<br /><br />}<br /><br />.ear:first-child {<br /><br />-ms-transform: rotate(-35deg);<br /><br />-webkit-transform: rotate(-35deg);<br /><br />transform: rotate(-35deg);<br /><br />}<br /><br />#eyes {<br /><br />clear: both;<br /><br />width: 350px;<br /><br />position: relative;<br /><br />top: 25px;<br /><br />left: 53px;<br /><br />}<br /><br />.eye {<br /><br />width: 120px;<br /><br />height: 120px;<br /><br />background-color: #FFFFFF;<br /><br />border-radius: 50%;<br /><br />float: left;<br /><br />}<br /><br />.eye:first-child {<br /><br />margin-right: 50px;<br /><br />}<br /><br />.pupil {<br /><br />position: relative;<br /><br />top:40px;<br /><br />background-color: #000000;<br /><br />border-radius: 50%;<br /><br />width: 80px;<br /><br />height: 80px;<br /><br />animation-name: an-pupils;<br /><br />animation-duration: 1s;<br /><br />animation-iteration-count: infinite;<br /><br />animation-direction: alternate-reverse;<br /><br />}<br /><br />.pupil_ref {<br /><br />background-color: #FFFFFF;<br /><br />border-radius: 45%;<br /><br />width: 30px;<br /><br />height: 30px;<br /><br />position: relative;<br /><br />top: 40px;<br /><br />left: 10px;<br /><br />}<br /><br />#nose {<br /><br />width: 45px;<br /><br />height: 30px;<br /><br />border-radius: 50%;<br /><br />background-color: #FFFFFF;<br /><br />position: relative;<br /><br />top: 160px;<br /><br />left: 170px;<br /><br />}<br /><br />#baffi_sx {<br /><br />position: relative;<br /><br />left: -100px;<br /><br />top: 85px;<br /><br />-ms-transform: rotate(10deg);<br /><br />-webkit-transform: rotate(10deg);<br /><br />transform: rotate(10deg);<br /><br />}<br /><br />#baffi_dx {<br /><br />position: relative;<br /><br />left: 223px;<br /><br />top: 96px;<br /><br />-ms-transform: rotate(-10deg);<br /><br />-webkit-transform: rotate(-10deg);<br /><br />transform: rotate(-10deg);<br /><br />}<br /><br />.baffo{<br /><br />width:260px;<br /><br />height:5px;<br /><br />border:solid 3px #000;<br /><br />border-color:#000 transparent transparent transparent;<br /><br />border-radius: 60%/30px 30px 0 0;<br /><br />}<br /><br />&lt;/style&gt;<br /><br />&lt;/bold&gt;<br /><br />&lt;/html&gt;

Answered by klee3974
1

Answer:

x+y=z

Step-by-step explanation:

45;45;90

is the reqUired angle

Similar questions