In parallelogram ABCD, AB=(5x+2y) cm, BC=(3x+2y+2) cm, CD=(2x+y+6) cm, AD=(2x+y) cm, then find the length of side AB and side BC.
answer fast
Answers
Answer :-
- AB = 8 cm
- BC = 2 cm
Solution :-
Given in the Question, ABCD is a Parallelogram in which the side AB = (5x + 2y) cm , BC= (3x + 2y + 2) , CD = (2x + y + 6) cm and AD = (2x + y) cm
As we know, Opposite sides of a Parallelogram are equal.
∴ AB = CD
⇒ 5x + 2y = 2x + y + 6
⇒ 3x + y = 6 ...(1)
Similarly,
⇒ BC = AD [ Opposite sides of a Parallelogram are equal ]
⇒ 3x + 2y + 2 = 2x + y
⇒ x + y = -2 ...(2)
Subtracting (2) from (1), we get
⇒ 3x + y - x - y = 6 - (-2)
⇒ 2x = 6 + 2
⇒ 2x = 8
⇒ x = 4
Substituting [x = 4] in (2)
⇒ 4 + y = -2
⇒ y = -6
We get, x = 4 and y = -6
Now,
Length of side AB = 5x + 2y cm
⇒ AB = 5×4 + 2×-6
⇒ AB = 20 - 12
⇒ AB = 8 cm
Similarly,
Length of side BC = 3x + 2y + 2
⇒ BC = 3×4 + 2×-6 + 2
⇒ BC = 12 - 12 + 2
⇒ BC = 2 cm
Hence, The length of side BC is 2 cm while length of side AB is 8 cm.
Some Properties of a Parallelogram :-
- Opposite sides of a Parallelogram are equal.
- Opposite angles of a Parallelogram are also equal.
- The sum of two Adjacent angles of a Parallelogram is 180° .
- The Diagonals of a Parallelogram bisect each other.
- A diagonal divides the parallelogram into two congruent triangles of equal area.