- in parallelogram abcd two points p and q are taken on diagonal bd such that dp is equals
Answers
Answered by
18
(i) In ΔAPD and ΔCQB,
∠ADP = ∠CBQ (Alternate interior angles for BC || AD)
AD = CB (Opposite sides of parallelogram ABCD)
DP = BQ (Given)
∴ ΔAPD ≅ ΔCQB (Using SAS congruence rule)
(ii) As we had observed that ΔAPD ≅ ΔCQB,
∴ AP = CQ (CPCT)
(iii) In ΔAQB and ΔCPD,
∠ABQ = ∠CDP (Alternate interior angles for AB || CD)
AB = CD (Opposite sides of parallelogram ABCD)
BQ = DP (Given)
∴ ΔAQB ≅ ΔCPD (Using SAS congruence rule)
(iv) As we had observed that ΔAQB ≅ ΔCPD,
∴ AQ = CP (CPCT)
(v) From the result obtained in (ii) and (iv),
AQ = CP and
AP = CQ
Since opposite sides in quadrilateral APCQ are equal to each other, APCQ is a parallelogram
I hope this will help you
if not then comment me
∠ADP = ∠CBQ (Alternate interior angles for BC || AD)
AD = CB (Opposite sides of parallelogram ABCD)
DP = BQ (Given)
∴ ΔAPD ≅ ΔCQB (Using SAS congruence rule)
(ii) As we had observed that ΔAPD ≅ ΔCQB,
∴ AP = CQ (CPCT)
(iii) In ΔAQB and ΔCPD,
∠ABQ = ∠CDP (Alternate interior angles for AB || CD)
AB = CD (Opposite sides of parallelogram ABCD)
BQ = DP (Given)
∴ ΔAQB ≅ ΔCPD (Using SAS congruence rule)
(iv) As we had observed that ΔAQB ≅ ΔCPD,
∴ AQ = CP (CPCT)
(v) From the result obtained in (ii) and (iv),
AQ = CP and
AP = CQ
Since opposite sides in quadrilateral APCQ are equal to each other, APCQ is a parallelogram
I hope this will help you
if not then comment me
Answered by
8
Answer:
I THINK THIS WILL HELP YOU
Follow me
PLEASE MARK THIS AS BRAILLE ANSWER ❤️
Attachments:
Similar questions