In parallelogram PQRS, the bisector of angleP and angleQ meet at O. Find anglePOQ
Answers
Answer:
Given that:
∠SPO=∠OPQ and ∠RQO=∠OQP.
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]21(∠P+∠Q)=2180∘
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]21(∠P+∠Q)=2180∘∠OPQ+∠OQP=90∘
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]21(∠P+∠Q)=2180∘∠OPQ+∠OQP=90∘ Now,
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]21(∠P+∠Q)=2180∘∠OPQ+∠OQP=90∘ Now, In △PQO,
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]21(∠P+∠Q)=2180∘∠OPQ+∠OQP=90∘ Now, In △PQO,∠OPQ+∠OQP+∠POQ=180∘
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]21(∠P+∠Q)=2180∘∠OPQ+∠OQP=90∘ Now, In △PQO,∠OPQ+∠OQP+∠POQ=180∘∠POQ=90∘ [From equation (1)]
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]21(∠P+∠Q)=2180∘∠OPQ+∠OQP=90∘ Now, In △PQO,∠OPQ+∠OQP+∠POQ=180∘∠POQ=90∘ [From equation (1)]∠O=90∘.
∠SPO=∠OPQ and ∠RQO=∠OQP.∠P+∠Q=180∘ [Since PS∥QR]21(∠P+∠Q)=2180∘∠OPQ+∠OQP=90∘ Now, In △PQO,∠OPQ+∠OQP+∠POQ=180∘∠POQ=90∘ [From equation (1)]∠O=90∘.