Physics, asked by jyotikumari4867, 10 months ago

In placing a thin sheet of mica of thickness
12 x 10-5 cm in the path of one of the interfering
beams in YDSE the central fringe shifts equal to
fringe width. Refractive index of mica (a = 600 nm)​

Answers

Answered by roshinik1219
3

Given:

  • Thickness  of mica sheet (t) = 12 \times 10^{-5} cm = 12 \times 10^{-7} m  
  • Wavelength of light used (\lambda) = 6 \times 10^{-9}m

To Find:

  • Refractive index of mica ( \mu)  

Solution:

In a Young's experiment,

The shifts,    

    ⇒           ( \mu - 1 )t =n \lambda

                                                               n = 1

    ⇒       \mu = \frac{ 1 \times 6 \times 10^{-9} }{12 \times 10^{-7}} + 1

   

    ⇒      \mu = \frac{ 6 \times 10^{-9} + 12 \times 10^{-7} }{12 \times 10^{-7}}

 

   ⇒          \mu = 6 \times 10^{-7} (\frac{ 1 + 0.02 }{12 \times 10^{-7}})

   ⇒          \mu =\frac{1.02}{2}

   ⇒         \mu = 0.51

Thus,  Refractive index of mica is 0.51

Similar questions