Math, asked by aryanpandey18094, 3 months ago

in polynomial x^2+x-2 if a and b are zeros find 1/a-1/b​

Answers

Answered by amansharma264
6

EXPLANATION.

Quadratic equation.

⇒ x² + x - 2.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -(1)/1 = -1.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = (-2)/1 = -2.

To find :

⇒ 1/α + 1/β.

⇒ β + α/αβ.

Put the values in the equation, we get.

⇒ -1/-2 = 1/2.

⇒ 1/α + 1/β = 1/2.

                                                                                                                         

MORE INFORMATION.

Nature of the factors of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by Anonymous
53

{\large{\pmb{\sf{\underline{Question...}}}}}

{\red{\bigstar}} In a polynomial {\red{\sf{x^{2} + x-2}}} , {\red{\sf{\alpha}}} and {\red{\sf{\beta}}} are the zeroes. Find out {\red{\sf{\dfrac{1}{\alpha} - \dfrac{1}{\beta}}}}

{\large{\pmb{\sf{\underline{Given \: that...}}}}}

{\purple{\bigstar}} A polynomial is given as {\red{\sf{x^{2} + x-2}}}

{\purple{\bigstar}} {\red{\sf{\alpha}}} and {\red{\sf{\beta}}} are the zeroes of the given polynomial.

{\large{\pmb{\sf{\underline{To \: find...}}}}}

{\purple{\bigstar}} The value of {\red{\sf{\dfrac{1}{\alpha} - \dfrac{1}{\beta}}}} in the given polynomial.

{\large{\pmb{\sf{\underline{Solution...}}}}}

{\purple{\bigstar}} The value of {\red{\sf{\dfrac{1}{\alpha} - \dfrac{1}{\beta}}}} in the given polynomial = 3/-2

{\large{\pmb{\sf{\underline{Knowledge...}}}}}

Some knowledge about Quadratic Equations -

★ Sum of zeros of any quadratic equation is given by ➝ α+β = -b/a

★ Product of zeros of any quadratic equation is given by ➝ αβ = c/a

★ A quadratic equation have 2 roots

★ ax² + bx + c = 0 is the general form of quadratic equation

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

{\large{\pmb{\sf{\underline{Using \; concepts...}}}}}

{\red{\bigstar}} Formula to find out the sum of zeros of any quadratic equation =

{\small{\underline{\boxed{\sf{\alpha + \beta \: = -b/a}}}}}

{\red{\bigstar}} Formula to find out the product of zeros of any quadratic equation =

{\small{\underline{\boxed{\sf{\alpha \beta \: = c/a}}}}}

{\large{\pmb{\sf{\underline{Full \; Solution...}}}}}

~ Firstly we have to use the formula to find out the sum of zeros of any quadratic equation =

{\small{\underline{\boxed{\sf{\alpha + \beta \: = -b/a}}}}}

{\sf{:\implies \alpha + \beta \: = -b/a}}

{\sf{:\implies Given \: = x^{2} + x-2}}

{\sf{:\implies \alpha + \beta \: = -(1)/1}}

{\sf{:\implies \alpha + \beta \: = -1/1}}

{\sf{:\implies \alpha + \beta \: = -1}}

~ Now we have to use the formula to find out the product of zeros of any quadratic equation =

{\small{\underline{\boxed{\sf{\alpha \beta \: = c/a}}}}}

{\sf{:\implies \alpha \beta \: = c/a}}

{\sf{:\implies \alpha \beta \: = c/a}}

{\sf{:\implies Given \: = x^{2} + x-2}}

{\sf{:\implies \alpha \beta \: = -2/1}}

{\sf{:\implies \alpha \beta \: = -2}}

~ Now we have to use substitution method we get the following result,

{\sf{:\implies By \: substituting \: values \: we \: get}}

{\sf{:\implies x^{2} + x-2}}

{\sf{:\implies x^{2} + x-2 = 0}}

{\sf{:\implies x^{2} + 2x - x - 2 = 0}}

{\sf{:\implies x(x+2) -1(x+2) = 0}}

{\sf{:\implies x \: = -2 \: or \: x \: = -1}}

~ Now we have to use an identity and have to find out the value of (β-α)

{\small{\underline{\boxed{\sf{(a-b)^{2} \: = (a+b)^{2} - 4ab}}}}}

{\sf{:\implies (a-b)^{2} \: = (a+b)^{2} - 4ab}}

{\sf{:\implies (a-b)^{2} \: = (-1)^{2} - 4(-2)}}

{\sf{:\implies (a-b)^{2} \: = 1 + 8}}

{\sf{:\implies (a-b)^{2} \: = 9}}

{\sf{:\implies (a-b) = \sqrt{9}}}

{\sf{:\implies (a-b) = 3}}

{\sf{:\implies (b-a) = -3}}

{\sf{:\implies Therefore, \: (\beta - \alpha) \: = -3}}

~ Now finding the value of 1/α - 1/β

{\sf{:\implies \dfrac{1}{\alpha} - \dfrac{1}{\beta}}}

{\sf{:\implies (b-a)/ab}}

{\sf{:\implies 3/-2}}

Henceforth, the value of 1/α - 1/β = 3/-2

Similar questions