Math, asked by 79mehtajatin, 7 months ago

in power notation 243/32 can be expressed as​

Answers

Answered by janhvijaiswal2
5

Answer:

243/32 can be expressed as:

(3/2)^5

Answered by hukam0685
1

\bf \red{ \frac{243}{32}  =  \left( { \frac{3}{2} } \right)^{5} } \\

Given:

  •  \frac{243}{32}  \\

To find:

  • Write the given fraction in power notation.

Solution:

Step 1:

Write prime factors of both numbers.

 \frac{243}{32}  =  \frac{3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 2}  \\

or

 \frac{243}{32}  =  \frac{ {3}^{5} }{ {2}^{5} }  \\

Step 2:

Rewrite the expression to simplify.

We know that

\bf \frac{ { {a}^{n} }}{ {b}^{n} }  = \left({ \frac{a}{b} } \right)^{n}  \\

So,

 \frac{243}{32}  =  \left( { \frac{3}{2} } \right)^{5}  \\

Thus,

Power notation of given fraction is shown below:

\bf \frac{243}{32}  =  \left( { \frac{3}{2} } \right)^{5}  \\

Learn more:

1) On Simplifying 8^3×2^4, we get. (a) 16^7 (b) 2^10 (c) 2 ^13 (d) 8^4

https://brainly.in/question/15040943

2) if x/y= (3/2)²÷(5/7)⁰ find the value of ( y/ x )³

https://brainly.in/question/36367617

Similar questions