In ∆ PQR and ∆ XYZ, if PQ/XY = QR/YZ = PR/XZ =2/5 ,then find PQR : XYZ
Answers
Correct Statement is
In ∆ PQR and ∆ XYZ, if PQ/XY = QR/YZ = PR/XZ =2/5, then find ar(∆ PQR) : ar(∆ XYZ)
ANSWER
So,
- By area ratio theorem,
we have
- Theorem: If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.
So,
Additional Information :-
Basic Proportionality theorem
- Statement: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.
Pythagoras Theorem
- Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides“.
Converse of Pythagoras Theorem
- The converse of Pythagoras theorem states that “If the square of a side is equal to the sum of the square of the other two sides, then triangle must be right angle triangle”.
Answer:
4/25
Step-by-step explanation:
Correct Statement is
In ∆ PQR and ∆ XYZ, if PQ/XY = QR/YZ = PR/XZ =2/5, then find ar(∆ PQR) : ar(∆ XYZ)
ANSWER
\begin{gathered}\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{\rm A \: \triangle \:PQR \: and \: \triangle \: XYZ \: such \: that} \\ &\sf{ \rm \: \dfrac{PQ}{XY} = \dfrac{QR}{YZ} = \dfrac{PR}{XZ} = \dfrac{2}{5} } \end{cases}\end{gathered}\end{gathered}\end{gathered}
Given−
⎩
⎪
⎨
⎪
⎧
A△PQRand△XYZsuchthat
XY
PQ
=
YZ
QR
=
XZ
PR
=
5
2
\begin{gathered}\begin{gathered}\bf \: To\:find\:-\begin{cases} &\bf{\dfrac{ar(\triangle \: PQR)}{ar(\triangle \: XYZ)} } \end{cases}\end{gathered}\end{gathered}
Tofind−{
ar(△XYZ)
ar(△PQR)
\large\underline\purple{\bold{Solution :- }}
Solution:−
\rm :A \: \triangle \:PQR \: and \: \triangle \: XYZ \: such \: that:A△PQRand△XYZsuchthat
\rm \: \dfrac{PQ}{XY} = \dfrac{QR}{YZ} = \dfrac{PR}{XZ}
XY
PQ
=
YZ
QR
=
XZ
PR
\rm :\implies\: \triangle \: PQR \: \sim \: \triangle \: XYZ:⟹△PQR∼△XYZ
So,
By area ratio theorem,
we have
Theorem: If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.
So,
\rm :\implies\:\dfrac{ar(\triangle \: PQR)}{ar(\triangle \: XYZ)} = \dfrac{ {PQ}^{2} }{ {XY}^{2} }:⟹
ar(△XYZ)
ar(△PQR)
=
XY
2
PQ
2
\rm :\implies\:\dfrac{ar(\triangle \: PQR)}{ar(\triangle \: XYZ)} = \dfrac{ {2}^{2} }{ {5}^{2} }:⟹
ar(△XYZ)
ar(△PQR)
=
5
2
2
2
\rm :\implies\: \boxed{ \pink{\dfrac{ \bf \: ar(\triangle \: PQR)}{ \bf \: ar(\triangle \: XYZ)} = \dfrac{ 4 }{ 25 } }}:⟹
ar(△XYZ)
ar(△PQR)
=
25
4