In ∆ PQR, ∠ PQR = 90°, seg QN is the median of seg PR. If QN = 10, Find PR.
Answers
Answered by
0
Answer:
ΔPQR , Right angled at Q and QR = b and Area of ΔPQR = a
QN is perpendicular to PR.
To Prove :
length of QN = 2ab/√b^{4} + 4a^{2}b
4
+4a
2
Solution:
Consider ΔPQR
Area = \frac{1}{2}
2
1
PQ.QR = a
2a/QR = PQ
Therefore
PQ = 2a/b
Consider ∠R
tan ∠R = PQ/b = 2a/b²
Now consider ΔQNR
sin ∠R = QN/QR
QN = sin ∠R x QR = b x sin ∠R
sin∠R = opposite side / hypotenuse
sin ∠R = PQ/PR = \frac{\frac{2a}{b} }{\sqrt{b^{2} + (\frac{2a}{b} )^{2} } }
b
2
+(
b
2a
)
2
b
2a
= \frac{2a}{\sqrt{b^{4} + 4a^{2} } }
b
4
+4a
2
2a
Therefore
QN = b x sin
∠R = \frac{2ab}{\sqrt{b^{4} + 4a^{2} } }
b
4
+4a
2
2ab
Similar questions