In ∆PQR, PS ⟂ QR and PS² = QS× RS. Prove that ∆PQR is a right angled triangle.
(class 10 CBSE SAMPLE PAPER 2017-18 MATHS)
Answers
Answered by
92
[Figure is in the attachment]
SOLUTION:
In right angled ∆PSQ & ∆PSR
PQ²= PS²+QS²…………(1)
and PR²= PS²+SR²………(2)
On adding eq 1 & 2
PQ²+PR²= 2PS²+QS²+SR²
PQ²+PR²= 2(QS×SR) + QS²+SR²
[ GIVEN: PS²= QS×RS]
PQ²+PR²=(QS+SR)²
[a²+b²+2ab= (a+b)²]
PQ²+PR²=QR² [ QR= QS+SR]
Hence,∆PQR is a right angled ∆ right angled at P.
HOPE THIS WILL HELP YOU…..
SOLUTION:
In right angled ∆PSQ & ∆PSR
PQ²= PS²+QS²…………(1)
and PR²= PS²+SR²………(2)
On adding eq 1 & 2
PQ²+PR²= 2PS²+QS²+SR²
PQ²+PR²= 2(QS×SR) + QS²+SR²
[ GIVEN: PS²= QS×RS]
PQ²+PR²=(QS+SR)²
[a²+b²+2ab= (a+b)²]
PQ²+PR²=QR² [ QR= QS+SR]
Hence,∆PQR is a right angled ∆ right angled at P.
HOPE THIS WILL HELP YOU…..
Attachments:
Answered by
2
Answer:
sahi khel gaya
Step-by-step explanation:
OP I AGREE
Similar questions