Math, asked by adi299484u, 6 months ago

In ∆PQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Detemine the values of sin P, cos P, tan P ? Class - 10 intro. to trigonometry

Answers

Answered by Uriyella
72
  • The value of sin P = 12 / 13.
  • The value of cos P = 5 / 13.
  • The value of tan P = 12 / 5.

Given :

  • The base of the right angled triangle = PQ = 5 cm.
  • PR + QR = 25 cm.

To Find :

  • The value of sin P.
  • The value of cos P.
  • The value of tan P.

Solution :

We have to find the values of sin P, cos P and tan P.

First, we need to find the measurement of hypotenuse (PR) and perpendicular (QR) of the right angled triangle.

Given,

\bf \implies PR + QR = 25 cm

So,

\bf \implies PR = 25 cm-QR \: \: ......(1)

By the pythagoras theorem,

\bf \implies {P}^{2} + {B}^{2} = {H}^{2} \\ \\ \\ \bf \implies {QR}^{2} + {PQ}^{2} = {PR}^{2}

Where,

  • H = Hypotenuse = PR = 25 - QR.
  • P = Perpendicular = QR.
  • B = Base = PQ = 5 cm.

Now, substitute all the values in the pythagoras theorem.

\bf \implies{(QR)}^{2} + {(5 \: cm)}^{2} = {(25 - QR)}^{2}

By using identity,

 \huge \star \:  \:  \:  \small\bf \bigg( \: {(a - b)}^{2} = {a}^{2} - 2ab + {b}^{2} \bigg)

\bf \implies  {QR}^{2}  + 25 \: {cm}^{2} =  {(25 \: cm)}^{2} - 2(25 \: cm)(QR) +  {(QR)}^{2} \\  \\  \\ \bf \implies \not{QR}^{2} + 25\: {cm}^{2} = 625 \: {cm}^{2} - 50 \: QR  \: cm \: \: + \not{QR}^{2}  \\  \\  \\ \bf \implies 25 \:  {cm}^{2}  = 625 \: {cm}^{2}  - 50 \: QR \: cm\\  \\  \\ \bf \implies 50 \: QR \: cm = 625 \: {cm}^{2} - 25 \: {cm}^{2}\\  \\  \\ \bf \implies 50 \: QR \: cm = 600 \:  {cm}^{2}  \\  \\  \\ \bf \implies QR \:  = \dfrac{\not600 \:  {cm}^{2} }{\not50 \: cm} \\  \\  \\\bf \implies QR = 12 \: cm \\  \\  \\  \:  \: \therefore \bf \:  \: Perpendicular= 12 \: cm

Now, substitute the value of QR in the equation (1),

\bf \implies PR = 25 cm-QR \\  \\  \\ \bf \implies PR = 25 \:cm-12 \: cm \\  \\  \\ \bf \implies PR = 13 \: cm \\  \\  \\  \:  \:  \bf \therefore \:  \: Hypotenuse = 13 \: cm

Now, we have to find the values of sin P, cos P and tan P.

1) sin P.

We know that,

 \huge \blue{\star} \:  \:  \small \bf sin \: \theta =  \dfrac{Perpendicular}{Hypotenuse}

So,

\bf \implies sin \: p =  \dfrac{QR}{PR}  \\  \\  \\ \bf \implies sin \: p =  \dfrac{12}{13}

2) cos P.

We know that,

 \huge \blue{\star} \:  \:  \small \bf cos \: \theta =  \dfrac{Base}{Hypotenuse}

So,

\bf \implies cos \: p =  \dfrac{PQ}{PR}  \\  \\  \\ \bf \implies cos \: p =  \dfrac{5}{13}

3) tan P.

We know that,

 \huge \blue{\star} \small \bf \: \: \: tan \: \theta = \dfrac{Perpendicular}{Base}

So,

\bf \implies tan \: p =  \dfrac{QR}{PQ} \\  \\  \\  \bf \implies tan \: p = \dfrac{12}{5}

Hence,

The value of sin P is 12 / 13, cos P is 5 / 13 and tan P is 12 / 5.

Attachments:

VishalSharma01: Awesome :)
Uriyella: Thankieew! ^^"
Answered by BrainlyHero420
51

Answer:

Given :-

  • In ∆ PQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm.

To Find :-

  • What is the value of sin P, cos P, tan P.

Solution :-

In PQR,

➟ PR = QR = 25 cm

➟ PR = (25 + QR)

And, PQ = 5 cm

By using Phythagorus Theorem,

\boxed{\bold{\small{Q{R}^{2} = P{Q}^{2} + P{R}^{2}}}}

⇒ QR² = (5)² + (25 + QR)²

⇒ QR² = 25 + 625 + 50 QR + QR

⇒ 25 + QR = 625 - 50 QR + QR

⇒ 50 + QR = 625 - 25

⇒ 50 + QR = 600

⇒QR = \sf\dfrac{\cancel{600}}{\cancel{50}}

QR = 12 cm

Hence,

  • QR (Perpendicular) = 12 cm
  • PR (Hypotenuse) = (25 - QR) = (25 - 12) = 13 cm
  • PQ (Base) = 5 cm (Given)

Now, we have to find the values of sin P, cos P, tan P,

sin P = \dfrac{p}{h} = \dfrac{QR}{PR} = \boxed{\bold{\small{\dfrac{12}{13}}}}

cos P = \dfrac{b}{h} = \dfrac{PQ}{PR} = \boxed{\bold{\small{\dfrac{5}{13}}}}

tan P = \dfrac{p}{b} = \dfrac{QR}{PQ} = \boxed{\bold{\small{\dfrac{12}{5}}}}

\therefore The value of sin P is \dfrac{12}{13}, cos P is \dfrac{5}{13} and tan P is \dfrac{12}{5}.

Attachments:

VishalSharma01: Nice :)
Similar questions