In ∆PQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Detemine the values of sin P, cos P, tan P ? Class - 10 intro. to trigonometry.
Don't spam
Answers
Let PR be 'x' and QR be = 25-x ,
Using Pythagorus Theorem,
==>PR^2 = PQ^2 + QR^2 ,
x^2 = (5)^2 + (25-x)^2 ,
x^2 = 25 + 625 + x^2 - 50x ,
50x = 650 ,
x = 13 .
therefore, PR = 13 cm ,
and, QR = (25 - 13) = 12 cm ,
Now, Sin P = opposite/hypotenuse = QR/PR = 12/13 ,
Tan P= opposite/adjacent = QR/PQ = 12/5 ,
Cos P= adjacent/hypotenuse = PQ/PR = 5/13.
Any other doubts Itzraisingstar is here to help you!
Answer:
⇒PQ=5cm
⇒PR+QR=25cm
⇒PR=25−QR
Now, In △PQR
⇒(PR) 2 =PQ2+QR 2
⇒(25−QR) 2 =5 2+QR 2
⇒625+QR 2−50QR=25+QR 2
⇒50QR=600
⇒QR=12cm
⇒PR=25−12=13cm
∴sinP= PR/QR= 13/12 ,cosP= PQ/PR =13/5 ,tanP=
OR/PR=12/5
Hence, the answers are sinP= 13/12 ,
cosP= 13/5 ,tanP= 5/12
Step-by-step explanation:
hope this helps you