Math, asked by srinivasrti4358, 1 year ago

In ΔPQR, right-angled at Q, PR+QR=25cm and PQ =5 cm.Determine the values of sin P, cos P and tan P.

Answers

Answered by krish188295
5
Given that, PR + QR = 25
PQ = 5

Let PR be x

Therefore,

QR = 25 - x



Applying Pythagoras theorem in ΔPQR, we obtain

PR2 = PQ2 + QR2

x2 = (5)2 + (25 - x)2

x2 = 25 + 625 + x2 - 50x          [as, (a + b)2 = a2+ b2 + 2ab]

50x = 650

x = 13

Therefore,

PR = 13 cm

QR = (25 - 13) cm = 12 cm
and we know, 

Sin P = 

Cos P = 

Tan P = 

krish188295: marane de hamko points lene se matlb
krish188295: candy crush se uper uth
krish188295: pubg pubg khel
Answered by Disha976
3

 \rm { Given \: that, }

  •  \rm { PR + QR = 25}
  •  \rm { PQ = 5 }

_____

 \rm { Let \: PR \:  be \: x.</p><p>}

 \rm { \therefore QR = 25 - x</p><p> }

Applying Pythagoras theorem in ΔPQR, we obtain,

 \rm\blue { {PR}^{2} = {PQ}^{2} + {QR}^{2} }

 \rm{ \leadsto {x}^{2} = {(5)}^{2} + {(25-x)}^{2} }

 \rm{ \leadsto \cancel { {x}^{2}} = 25 + 625 \cancel { + {x}^{2}} - 50x }

 \rm{ \leadsto 50x = 650</p><p> }

 \rm{ \leadsto x = \cancel {\dfrac{650}{50}</p><p>}=13cm }

 \rm\red { \therefore, PR = 13 cm</p><p>}

 \rm\red { QR = (25 - 13) cm = 12 cm }

______

Now, the values of sin P, cos P and tan P

 \rm { sin \: P =\dfrac{ side \: opposite \: to \:  \angle P}{Hypotenuse} = \dfrac{12}{13} }

 \rm { cos \: P = \dfrac{ side \: adjacent \: to \:  \angle P}{Hypotenuse} = \dfrac{5}{13} }

 \rm { tan \:  P= \dfrac{ side \: opposite \: to \:  \angle P}{side \: adjacent \: to \:  \angle P } = \dfrac{12}{5} }

Similar questions