Math, asked by madhura1106, 5 months ago

In ∆PQR, right angled at Q, PR + QR = 25cm and PQ = 5cm. Determine the values of -
(i) sinP
(ii) cosP and
(iii) tanP​

Attachments:

Answers

Answered by SuhaniiAgarwal
3

Answer:

i) 12/13

ii) 5/13

iii) 12/5

Step-by-step explanation:

Let QR be x

PR + x = 25

PR = 25 - x

By Pythagoras Theorem,

Square of Hypotenuse = Sum of squares of other two sides

PR² = PQ² + QR²

(25 - x)² = x² + 5²

25² - 50x + x² = x² + 25

625 - 50x = 25

- 50x = 25 - 625

- 50x = - 600

50x = 600

x = 600/50

x = 12 cm

QR = 12 cm

PR = 25 - x = 25 - 12 = 13 cm

i) sinP = opposite/hypotenuse

= 12/13

ii) cosP = adjacent/hypotenuse

= 5/13

iii) tanP = opposite/adjacent

= 12/5

Hope it helps you:)

Attachments:
Answered by KrisGalaxy
14

  1.  \fbox \red { sin(p) = 5/13 }
  2.  \fbox \purple { cos(p) = 12/13 }
  3.  \fbox \green { tan(p) = 5/12 }

Step-by-step explanation:

Hi ! Here u go with your Answer

GIVEN :-

PQ = 5cm

Let QR be x and

PR= ( 25-x)

APPLYING PYTHAGORAS THEOREM:-

Hypotenuse ² =v Perpendicular ² + Base²

[let's put the values]

 {(25 - x)}^{2}  =  {5}^{2}  +  {x}^{2}  \\  \\  \\ 625 +  {x}^{2}  - 50x =  {x}^{2}  + 25 \\  \\ 625 - 50x = 25 \\  \\  - 50x = 25 - 625 \\  \\  - 50x =  - 600 \\  \\ x =  \frac{ - 600}{ - 50}  \\  \\ x = 12 \: cm

Hence the value of x is 12 cm

let's substitute the values

PR = 25 -x

= 25 - 12

= 13 cm

And QR = 12cm

____________________________

 \sin(p)  =  \frac{perpendicular}{hypotenuse}  \\  \\  =  \frac{5}{13}

________________________

  \cos(p)  =  \frac{base}{hypotenuse}  \\  \\  =  \frac{12}{13}

_______________________

  \tan(p)  =  \frac{ \sin(p) }{ \cos(p) }  \\  \\  =  \frac{ \frac{5}{13} }{ \frac{12}{13} }  \\  \\  =  \frac{5 \times 13}{12 \times 13 }  \\  \\ =   \frac{5}{12}

Similar questions