In Δ PQR, right-angled at Q, PR + QR = 30 cm and PQ = 10 cm. Determine the values of sin P, cos P and tan P.
Answers
Answered by
17
Formulae to use :
•
•
•
Pythagoras property :
- H² = B² + P²
● H = Hypotenuse
● B = Base
● P = Perpendicular
Algebraic identity :
- (a - b)² = a² + b² - 2ab
Explication of steps :
Given that :
- PQR is a ∆, right-angled at Q.
- PR + QR = 30 cm
- PQ = 10 cm
To calculate :
- The values of sin P, cos P and tan P.
Calculation :
According to the question,
Let, PR be x cm. So,
• PR = Hypotenuse (x cm)
• PQ = Base (10 cm)
• QR = Perpendicular → ( 30 - x ) cm
By using pythagoras property,
H² = B² + P²
(x)² = (10)² + (30 - x)²
- (a - b)² = a² + b² - 2ab
(x)² = (10)² + (30)² + (x)² - 2(30x)
x² = 100 + 900 + x² - 60x
x² - x² = 1000 - 60x
0 = 1000 - 60x
0 + 60x = 1000
60x = 1000
x =
x =
x =
So,
Also,
QR = ( 30 - x ) cm
QR = ( 30 - ) cm
QR = cm
QR = cm
Value of sin P , cos P and tan P :
•
★
_________
•
★
_________
•
★
Hence, we got the answer !
Attachments:
Similar questions
English,
1 month ago
Computer Science,
1 month ago
Social Sciences,
8 months ago
Biology,
8 months ago
English,
8 months ago