Math, asked by Mister360, 2 months ago

In ΔPQR, right-anlged at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P

Answers

Answered by AbhinavRocks10
74

Answer:

⇒PQ=5cm

⇒PR+QR=25cm

⇒PR=25−QR

Now, In △PQR

⇒(PR) 2

=PQ 2 +QR 2

⇒(25−QR) 2 =5 2 +QR 2

⇒625+QR 2 −50QR=25+QR 2

⇒50QR=600

⇒QR=12cm

⇒PR=25−12=13cm

.

\bf: ⇒50QR=600</h3><h3>⇒QR=12cm</h3><h3>⇒PR=25−12=13cm

∴sinP= PR QR = 13 12 ,cosP= PR PP = 135 ,tanP= PQ QR = 512

Hence, the answers are sinP= 1312 ,cosP= 135 ,tanP= 512 .

 \__________\

Attachments:
Answered by BrainlyHeartbeat1234
5282

{ \mathbb{ \colorbox{black} { \boxed{ \boxed{ \colorbox{lime} {-:Answer:-}}}}}}

 \large{ \pmb{ \underline{ \underline{\frak{ \color{red}{Given::}}}}}}

 \pink{➠} \sf{ \triangle PQR  \: is  \: a  \: right - angled \:  triangle. }

 \pink{➠} \sf{ \angle Q  \: is  \: a  \: right \:  angle \:  of  \: triangle.  }

 \pink{➠} \sf{PR+QR=25cm  }

 \pink{➠} \sf{PQ=5cm  }

 \large{ \pmb{ \underline{ \underline{\frak{ \color{magenta}{To  \: find::}}}}}}

 \pink{➠} \sf{sin \: P  }

 \pink{➠} \sf{cos \: P  }

 \pink{➠} \sf{tan \: P  }

 \large{ \pmb{ \underline{ \underline{\frak{ \color{black}{Formula  \: used::}}}}}}

 \pink{➠} \sf{sin \: P =  \frac{side \: opposite \: to \:  \angle P}{hypotenuse}   }

 \pink{➠} \sf{cos \: P =  \frac{side \: adjacent \: to \:  \angle P}{hypotenuse}   }

 \pink{➠} \sf{tan \: P =  \frac{side \: opposite\: to \:  \angle P}{side \: adjacent \: to  \:  \angle P}   }

 \large{ \pmb{ \underline{ \underline{\frak{ \color{blue}{According  \: to  \: Question::}}}}}}

 \bf{Let's  \: start \:  now!!! }

 \sf{Let  \: QR={ \bf \: x } \: cm}

 : :\implies\sf{PR+QR=25cm  }

 : :\implies\sf{PR = 25 \: cm - QR  }

 : :\implies\sf{PR = 25 \: cm -{ \bf x } } \: \:  \:  \:  \:  \:  \:  \:  \:  \:  ...(i)

 \sf{In  \:  \triangle PQR, }

{: :  \implies  \sf{(PR)}^{2}  =  {(PQ)}^{2}  +  {(QR)}^{2}  \:  \:  \: (By \: pythagoras \: theorem)}

{: :  \implies  \sf{(25 -  \bf x)}^{2}  =  {(5)}^{2}  +  {( \bf \: x)}^{2}}

{: :  \implies  \sf{ {(25)}^{2}  -  \bf (x)}^{2} - 2 \times 25 \times  {\bf \: x}  =  {(5)}^{2}  +  {( \bf \: x)}^{2}}

{: :  \implies  \sf{625 +  { \bf \: x}^{2}  - 50 {\bf \: x} = 25 +  { \bf \: x}^{2} }}

{: :  \implies  \sf{625 +  { \bf \: x}^{2}  - 50 {\bf \: x}  - 25  -   { \bf \: x}^{2} = 0 }}

{: :  \implies  \sf{{ \bf \: x}^{2}  -  {\bf \:  {x}^{2} }  - 50 {\bf \: x}   + 625 - 25= 0 }}

{: :  \implies  \sf{{- 50 {\bf \: x}   + 600= 0 }}}

{: :  \implies  \sf{{- 50 {\bf \: x} = - 60 0 }}}

{: :  \implies  \sf{{ {\bf \: x} = \frac{ - 600}{ - 50} }}}

{: :  \implies  \sf{{ {\bf \: x} =  \xcancel\frac{ - 600}{ - 50} }}}

{: :  \implies  \sf{{ {\bf \: x} =12cm}}}

 \bf{Hence,}

::  \implies \sf{ QR={ \bf \: x } \: cm = 12 \: cm}

 \bf{Then,}

{ : :\implies\sf{PR = 25 \: cm -{ \bf x } } \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \{from \: equation \: (i) \}}

{ : :\implies\sf{PR = 25 \: cm -{ 12 \: cm} } }

{ : :\implies\sf{PR =13  \: cm } }

 \bf{Again,}

 \sf{The \:  value \:  of \:  sin \:  P  \: is}

 \pink{➠} \sf{sin \: P =  \frac{side \: opposite \: to \:  \angle P}{hypotenuse}   }

:: \implies\sf{sin \: P =  \frac{QR}{PR} }

 \pink{➠} \sf{sin \: P =  \frac{12}{13}   }

 \sf{ And,the\:  value \:  of \: cos   \: P\: is}

 \pink{➠} \sf{cos \: P =  \frac{side \: adjacent \: to \:  \angle P}{hypotenuse}   }

:: \implies\sf{cos \: P =  \frac{PQ}{PR} }

 \pink{➠} \sf{cos \: P =  \frac{5}{13}   }

 \sf{At  \: last,the\:  value \:  of \:tan\: P \: is}

 \pink{➠} \sf{tan \: P =  \frac{side \: opposite\: to \:  \angle P}{side \: adjacent \: to  \:  \angle P}   }

:: \implies\sf{tan \: P =  \frac{QR}{PQ} }

 \pink{➠} \sf{tan \: P =  \frac{12}{5}   }

 \sf{If  \: we  \: use \: alternative  \: method  \: to  \: find \:  the \:  value  \: of  \: tan  \: P  \: is,}

 \pink{➠} \sf{tan \: P =  \frac{sin \:  P}{cos \: P}   }

:: \implies\sf{tan \: P =  \frac{ \frac{12}{13} }{ \frac{5}{13} }   }

:: \implies\sf{tan \: P =  \frac{ \frac{12}{ \cancel{13}} }{ \frac{5}{ \cancel{13}} }   }

 \pink{➠} \sf{tan \: P =  \frac{12}{5}   }

 \large{ \pmb{ \underline{ \underline{\frak{ \color{green}{Diagram::}}}}}}

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf 12cm}\put(2.8,.3){\large\bf 5cm}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf R}\put(.8,.3){\large\bf Q}\put(5.8,.3){\large\bf P}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $\Theta$}\end{picture}

 \large{ \pmb{ \underline{ \underline{\frak{ \color{brown}{Know  \: more \:  about  \: trigonometry:}}}}}}

\sf{Visit\:the \: attachment\:above.}

{\bf{Note:}}

\sf{Kindly\:visit\:the\: answer\:from\:web\:and} \\\sf{also\:refer\: attachment.}

\bf{Above\: question\:link:}https://brainly.in/question/37484532

Attachments:
Similar questions