in Δpqr the bisector of angle pqr and angle prq intersect each other at o. prove that angle qor=90° + 1/2 angle p
Attachments:
Answers
Answered by
2
Step-by-step explanation:
p+q+r=180°
2oqr+2orp=180°-p
2(oqr+orp)=180°-p
oqr+orp=90°-p/2 -----------(1)
In triangle QOR,
oqp+orq+qor=180°
oqr+orq=180°-qor ----------(2)
from eq. (1) and (2)
90°-p/2=180°-qor
qor=180°-90°+p/2
qor=90°+p/2
(Hence proved)
Attachments:
Similar questions