Math, asked by Abid9702, 11 months ago

In Q. No. 1, if PB = 10 cm, what is the perimeter of Δ PCD?

Attachments:

Answers

Answered by rk3091477
5

The perimeter of Δ PCD is 20 cm.

Step-by-step explanation:

Given,

PB = 10 cm

We have to find the perimeter of the Δ PCD.

Solution,

Since PA and PB are two tangents drawn to the circle from point P.

So according to tangent theorem which states that;

"Two tangents drawn from one external point are equal in length".

So we can say that;

PA=PB=10\ cm

Again,

CA = CQ  ⇒ 1

DQ = DB  ⇒ 2

according to tangent theorem.

Now we know that the perimeter of triangle is equal to sum of all sides of the triangle.

Perimeter =PC+CD +PD

Now we can write CD as;

CD = CQ +QD

And from 1 and 2 we can say that;

CD = CA + DB ⇒ 3

So we can say that;

Perimeter =PC+CA+DB +PD

And we can also say that;

PC+CA = PA   and

PD+DB = PB

\therefore Perimeter = PA+PB=10+10=20\ cm\\

Hence The perimeter of Δ PCD is 20 cm.

Answered by ompirkashsingh893349
2

Answer:

Mark me as BRAINLIST!!

Step-by-step explanation:

 \bold{The  \: perimeter  \: of  \: Δ PCD  \: is  \: 20 cm.}</p><p></p><p></p><p> \\ Given,</p><p></p><p> \\ PB = 10 cm</p><p></p><p> \\ We \:  have  \: to  \: find  \: the \:  perimeter \\   \: of \:  the \:  Δ PCD.</p><p></p><p> \\ Solution,</p><p></p><p> \\ Since \:  PA \:  and  \: PB  \: are  \: two \:  \\  tangents  \: drawn  \: to  \: the  \: circle  \\   from \:  point \:  P.</p><p></p><p> \\ So \:  according  \: to \:   \: tangent  \: the \:  \\ orem \:  which  \: states \:  that;</p><p></p><p> \\  "Two  \: tangents \:  drawn \:  from  \: one \: \\   external  \: point  \: are  \: equal  \: in  \: length".</p><p></p><p> \\ So  \: we \:  can  \: say \:  that;</p><p></p><p> \\ PA=PB=10\ cm  \\ PA=PB=10 cm</p><p></p><p> \\ Again,</p><p></p><p> \\ CA = CQ  ⇒ 1</p><p></p><p> \\ DQ = DB  ⇒ 2</p><p></p><p> \\ according  \: to \:  tangent \:  theorem.</p><p></p><p> \\  Now  \: we  \: know  \: that \:  the \:  perimeter \:  \\ of  \: triangle \:  is  \: equal \:  to  \: sum \:  of  \:  \\ all \:  sides  \: of  \: the \:  triangle.</p><p></p><p> \\ Perimeter =PC+CD +PD \\ Perimeter=PC+CD+PD</p><p></p><p> \\ Now  \: we \:  can \:  write \:  CD  \: as;</p><p></p><p> \\ CD = CQ +QD</p><p></p><p> \\ And  \: from \:  1  \: and \:  2 \:  we  \: can  \: say \:  that \\ CD = CA + DB ⇒ 3</p><p></p><p> \\ So  \: we  \: can  \: say \:  that;</p><p></p><p> \\ Perimeter =PC+CA+DB +Pd \\ Perimeter=PC+CA+DB+PD</p><p></p><p> \\ And  \: we \:  can  \: also \:  say  \: that; \\ </p><p></p><p>PC+CA = PA   \\  and</p><p></p><p> \\ PD+DB = PB</p><p></p><p> \\ \begin{gathered}\therefore Perimeter = PA+PB=10+10=20\ cm\\\end{gathered} </p><p> \\ ∴Perimeter=PA+PB=10+10=20 cm</p><p>	</p><p> </p><p></p><p> \\ Hence  \: The  \: perimeter \:  of \:  Δ PCD  \: is  \:  \bold{20 cm.}

Mark me as BRAINLIST!!

Similar questions