Math, asked by Agrimabajpai114, 7 months ago

In quadilateral ABCD
show that i AB + BC + CD + DA <2(BD + AC)
(i) AB + BC + CD + DA
> (BD + AC)

please answer this​

Answers

Answered by bilobila135
2

Answer:

he;lllo chaech thgis on google the second website is mine

Step-by-step explanation:

Answered by skwinkrishna
2

Answer:

Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side Therefore,  In Δ AOB, AB < OA + OB ……….(i)  In Δ BOC, BC < OB + OC ……….(ii)  In Δ COD, CD < OC + OD ……….(iii)  In Δ AOD, DA < OD + OA ……….(iv)  ⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD  ⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)]  ⇒ AB + BC + CD + DA < 2(AC + BD)  Hence, it is proved

Step-by-step explanation:

i think it's correct. mark me as brainliest if you like it.thank you buddy.

Similar questions