Math, asked by chaukhandeyogesh, 8 months ago

In quadratic equation 2y = 10 - y^2. FFind the value of b?​

Answers

Answered by jaidansari248
1

Step-by-step explanation:

2y = 10 -  {y}^{2}  \\  =  >  {y}^{2}  + 2y - 10 = 0 \\  here \: a = 1 \: b = 2 \: and \: c =  - 10 \\ then \\  discriminant(d) =  \sqrt{ {b}^{2} - 4ac }  \\  =  \sqrt{ {2}^{2} - 4 \times 1 \times ( - 10) }  \\  =  \sqrt{4 + 40}  =  \sqrt{44}  \\ then \: roots \: of \: y \: are \\1st >   \frac{ - b +  \sqrt{d} }{2a}  =  \frac{ - 2 +  \sqrt{44} }{2}   \\  =  - 1 +  \sqrt{11} \\ 2nd >  \frac{ - b -  \sqrt{d} }{2a}  =   \frac{ - 2 -  \sqrt{44} }{2}   \\  =   - 1 -  \sqrt{11}

Similar questions