In quadrilateral ABCD, AB = 40 cm, BC = 35 cm, CD = 48 cm
DA = 29 cm and BD = 29 cm. Find the area of quadrilateral
ABCD.
Answers
Area of quadrilateral
Given :-
A quadrilateral ABCD with
- AB = 40 cm
- BC = 35 cm
- CD = 48 cm
- DA = 29 cm
- BD (Diagonal) = 29 cm
Now, area of quadrilateral ABCD = Area of triangle ABD + Area of triangle BDC
Now,
We will calculate the area of triangles by Heron's formula.
In triangle ABD :-
s = (29 + 40 + 29)/2
= 49 cm
Area of triangle ABD = √s(s-a) (s-b) (s-c)
= √49(49-29) (49-40) (49-29)
= √49(20) (9) (20)
= √176400 = 420 cm²
In triangle BDC :-
s = (29 + 35 + 48)/2
= 56 cm
Area of triangle BDC = √s(s-a) (s-b) (s-c)
= √56(56-29) (56-35) (56-48)
= √56(27) (21) (8)
= √254016 = 504 cm²
So,
Area of quad. ABCD = 420 + 504 cm² = 924 cm²
Answer:
★ Area of quadrilateral= 924 cm² ★
Step-by-step explanation:
Given:
- AB = 40 cm , BC = 35 cm , CD = 48 cm , DA = 29 cm and BD = 29 cm
To Find:
- Area of quadrilateral ABCD
Solution: In ∆ABD of quadrilateral ABCD , by Heron's formula
→ Semiperimeter = a + b + c/ 2
→ S = 29 + 40 + 29 / 2 = 98/2 = 49 cm
★ Area of ∆ABD = √s(s–a)(s–b)(s–c) ★
→ √49(49–40)(49–29)(49–29)
→ √49(9)(20)(20)
→ √176400 = 420 cm²
Now, In ∆BCD of quadrilateral ABCD, by Heron's formula
→ Semiperimeter = a + b + c / 2
→ S = 35 + 29 + 48 / 2 = 112/2 = 56 cm
★ Area of ∆BCD = √s(s–a)(s–b)(s–c) ★
→ √56(56–35)(56–29)(56–48)
→ √56(21)(27)(8)
→ √254016 = 504 cm²
So, The area of quadrilateral ABCD will be = Area of ∆ ABD + Area of ∆BCD
→ Area of ABCD = (420+504)cm² = 924cm²
Hence, Area of ABCD will be 924 cm²