Math, asked by lomydarnei, 18 days ago


In Quadrilateral ABCD, the measures of <A, <B, <C and <D are in the ration 1 : 2 : 3 : 3, respectively. Find the
measure of the four angles.​

Answers

Answered by Syamkumarr
25

Answer:

The quadrilateral has angles measuring 40°, 80°, 120° and 120°.

Step-by-step explanation:

Given that the ratios of the angles of a quadrilateral is 1 : 2 : 3 : 3

Let the multiplying factor be 'x'

Therefore, the angles will be x, 2x, 3x and 3x

We know that sum of all the interior angles of a quadrilateral is 360°

Therefore x + 2x + 3x + 3x = 360°

=> 9x = 360°

=> x = 360/9

=> x = 40°

Therefore, the angles will be x= 40°

                                          2x = 80°

                                          3x = 120°

Therefore, the quadrilateral has angles measuring 40°, 80°, 120° and 120°.

Answered by Sauron
62

Step-by-step explanation:

Solution :

∠A : ∠B : ∠C : ∠D = 1 : 2 : 3 : 3

Let,

  • I st angle (∠A)= x
  • II nd angle (∠B) = 2x
  • III rd angle (∠C) = 3x
  • IV th angle (∠D) = 3x

According to the Question :

∠A + ∠B + ∠C + ∠D = 360°

⇒ x + 2x + 3x + 3x = 360

⇒ 9x = 360

⇒ x = 360/9

x = 40

I st angle (∠A)= 40°

II nd angle (∠B) = 2x

⇒ 2(40) = 80

II nd angle (∠B) = 80°

III rd angle (∠C) = 3x

⇒ 3(40) = 120

III rd angle (∠C) =120°

IV th angle (∠D) = 3x

⇒ 3(40) = 120

IV th angle (∠D) = 120°

  • 40° + 80° + 120° + 120° = 360°

Therefore, angles are 40°, 80°, 120° and 120°.

Similar questions