Math, asked by shubhamsarwar727, 9 days ago

In rectangle ABCD, AB = 4x - 2y. BC = x + 2y + 5. CD = 3x + y + 6. AD = 3x - y - 1 then find the length, breadth and perimeter of that rectangle. ​

Answers

Answered by wwwshindeshreya2907
0

Answer:

sorry I don't know exactly what the answer is

Answered by bhuvna789456
0

ABCD,  AB = 4x - 2y  , BC = x + 2y + 5, CD = 3x + y + 6 , AD = 3x - y - 1

Length, Breadth and Perimeter of that rectangle are 4 units,1 unit and 10 units.

Step by step explanation:

Given:

AB = 4x - 2y  \\BC = x + 2y + 5\\CD = 3x + y + 6 \\AD = 3x - y - 1

To find:

Length, Breadth and Perimeter of the rectangle.

Perimeter of rectangle:

Perimeter of rectangle=2(l+b)

Opposites side of a rectangle are equal in measure

AB=CD andBC=AD

To find ,AB=CD

4x-2y=3x+y+6

4x-2y-3x-y-6=0

x-3y-6=0\cdots\cdots\cdots\ccdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(1)

To find, BC=AD

x+2y+5=3x-y-1

3x-y-1-x-2y-5=0

2x-3y-6=0\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(2)

subtract equation (2) and (1)2x-3y-6=0\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(2)

x-3y-6=0\cdots\cdots\cdots\ccdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(1)

____________

x=0

Put in the value of x=0 in equation (1)

x-3y-6=0\\(0)-3y-6=0\\-3y=6\\y=\frac{6}{-3} \\y=-2

therefore to substitute x and y value in AB and BC

Length:

AB=4x-2y                                  x=0, y=-2

      =4(0)-2(-2)

      =0+4

AB=4 units

Breath:

BC=x+2y+5                         x=0, y=-2

    =0+2(-2)+5

    =-4+5

BC= 1 unit

hence,

        perimeter of rectangle = 2(AB+BC)

                                        =2(4+1)

                                        =2(5)

                                        =10units

hence,the length , breath,and perimeter of the rectangle are4 units , 1 unit and 10 units respectively.

Similar questions