Math, asked by bharathkumbham7169, 1 year ago

In right ΔABC, right angled at B, AC = 10 cm, and AB = 6 cm. Find the values of sin C, cos C, and tan C

Answers

Answered by sksonawane34
2

Ans as given above......

Attachments:
Answered by Disha976
3

Given that,

In a right angled triangle,

  •  \rm { AC = 10cm}
  •  \rm {AB = 6cm}
  •  \rm { \angle B = 90° }

____..

Applying pythagoras property-

 \sf\red { {H}^{2} = {B}^{2} + {P}^{2} }

 \sf { \leadsto {AC}^{2} = {BC}^{2} + {AB}^{2} }

 \sf { \leadsto {10cm}^{2} = {BC}^{2} + {6cm}^{2} }

 \sf { \leadsto  {BC}^{2} =  {10cm}^{2} - {6cm}^{2} }

 \sf { \leadsto  {BC}^{2} =  100cm - 36cm }

 \sf { \leadsto  {BC}^{2} =  64cm }

 \sf { \leadsto  BC = \sqrt{64cm} =8cm   }

 \rm\red { sin \: C = \dfrac{ side \: opposite \: to \: \angle C }{Hypotenuse} = \dfrac{AB}{AC} = \dfrac{6}{10} }

 \rm\red { cos \: C = \dfrac{ side \: adjacent \: to \: \angle C }{Hypotenuse} = \dfrac{BC}{AC} = \dfrac{8}{10} }

 \rm\red { tan \: C = \dfrac{ side \: opposite \: to \: \angle C }{side \: adjacent \: to \: \angle C} = \dfrac{AB}{BC} = \dfrac{6}{8} }

Attachments:
Similar questions