Math, asked by sumedhakulkarni055, 1 month ago

in right angle triangle ∆XYZ angle XYZ 90° YT 8s perpendicular to XZ then prove that XY²= XT*YT​

Answers

Answered by nihasrajgone2005
1

\huge\red{A}\pink{N}\orange{S} \green{W}\blue{E}\gray{R} =

Let XY Z is a right angle triangle

YZ = X, XZ = 2x, 2Y = 90°

By using Pythagoras theorem

XZ² = XY2+ YZ²

XY 2 = XZ² - YZ²

= (2x)²(x)² = 4x² - x² = 3x²

.. XY = √√√3x² = √3x

From AXY Z

\huge\red{tan  \: x = \frac{yz}{xy}  =  \frac{x}{ \sqrt{3 x } } =   \frac{1}{ \sqrt{3 }  } =  \tan \: 30°}

⇒ <Y XZ = 30°

\huge\red{tan \: z =  \frac{XY}{YZ} =  \frac{ \sqrt{3x} }{x}  =  \sqrt{3}  = tan60° }

→ Y ZX = 60°

\huge.. &lt;Y XZ = 30° and  \: ZY  \: XZ = 60°

Similar questions