in right angled angle TSU TS=5, angle s 90degree, SU=12 then find sint, cosT , tan T ,similarly find singles u, cos u, tan u
Answers
Answered by
7
Answer:
Step-by-step explanation:
In triangle TSU -
TS^2 + SU^2 =TU^2
25+144=TU^2
TU=13
NOW,
sin T=SU/TU=12/13
similarly,
Cos T=TS/TU=5/13
tan T=TS/SU=5/12.
You can find other ratios of angle U in the same way.
Please mark as BRANLIEST.
Answered by
4
Answers:
sinT = 12/13
cosT = 5/13
tanT = 12/5
Solution:
1st Draw The Triangle TSU, and mark Angle S = 90°, side TS = 5cm, & side SU = 12cm.
Using Pythagoras:
(TU)² = (TS)² + (SU)²
(TU)² = (5)² + (12)²
(TU)² = 25 + 144 = 169
TU = √169 = 13 cm
Hence the Three sides TS = 5cm, SU = 12cm, & TU = 13cm
sinT = P/H = 12/13
cosT = B/H = 5/13
tanT = P/B = 12/5
(or tanT = sinT/cosT = 12/5)
Thankyou!!!
sinT = 12/13
cosT = 5/13
tanT = 12/5
Solution:
1st Draw The Triangle TSU, and mark Angle S = 90°, side TS = 5cm, & side SU = 12cm.
Using Pythagoras:
(TU)² = (TS)² + (SU)²
(TU)² = (5)² + (12)²
(TU)² = 25 + 144 = 169
TU = √169 = 13 cm
Hence the Three sides TS = 5cm, SU = 12cm, & TU = 13cm
sinT = P/H = 12/13
cosT = B/H = 5/13
tanT = P/B = 12/5
(or tanT = sinT/cosT = 12/5)
Thankyou!!!
Similar questions