In right angled △PMO, ∠PMO = 90° and ∠POM = θ. Find the following ratio.
(i) sinθ (ii) cosθ (iii) tanθ
Answers
Step-by-step explanation:
sin =pm/po
cos=mo/po
tan=pm/mo
Answer:
Question
QuestionBookmark
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ=
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ= 25
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ= 2524
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ= 2524
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ= 2524 , find sinθandtanθ Similarly , find (sin
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ= 2524 , find sinθandtanθ Similarly , find (sin 2
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ= 2524 , find sinθandtanθ Similarly , find (sin 2 θ) and (cos
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ= 2524 , find sinθandtanθ Similarly , find (sin 2 θ) and (cos 2
QuestionBookmarkIn right angles ΔLMN If ∠N=θ,∠M=90 o ,cosθ= 2524 , find sinθandtanθ Similarly , find (sin 2 θ) and (cos 2 θ)
Step-by-step explanation:
Solution
In right angles ΔLMN
∠N=θ,
cosθ=
25
24
⇒
LN
MN
=
25
24
Let MN=24K and LN=25K .
Using Pythagoras theorem , we have
LN
2
=LM
2
+MN
2
⇒(25k)
2
=LM
2
+(24k
2
)
⇒LM
2
=625K
2
−576k
2
=49k
2
⇒LM
2
=(7k)
2
⇒LM=7k
Now,
sinθ=
LN
LM
=
25k
7k
=
25
7
tanθ=
NM
LM
=
24k
7k
=
24
7
Also ,
sin
2
θ=(
25
7
)
2
=
625
49
cos
2
θ=(
25
24
)
2
=
625
576