Math, asked by varun899550, 11 months ago

In right-angled triangle PQR, if angle P =60degree, angle R =30degree and PR = 12, then find the values of PQ and QR. ​

Answers

Answered by fairy777
0

Answer:PQ=6

QR= 6root3

Step-by-step explanation:

Answered by pansumantarkm
5

Answer:

PQ = 6 and QR = 6√3

Step-by-step explanation:

Given:

In Δ PQR, ∠P = 60°, ∠R = 30°

∴∠Q = 180° - (60° + 30°)

∠Q = 90°

PR = 12

To Find:

Values of PQ and QR.

Solution:

In right Δ PQR,

Sin 60° = \frac{QR}{PR}       [∵ Sinβ=\frac{perpendicular}{hypotenuse}]

\frac{\sqrt{3} }{2}=\frac{QR}{12}    [∵ Sin 60° = \frac{\sqrt{3} }{2}]

\frac{\sqrt{3}*12 }{2}=QR      

QR=6\sqrt{3}

Now,

Sin 30° = \frac{PQ}{PR}         [∵ Sinβ=\frac{perpendicular}{hypotenuse}]

\frac{1}{2}=\frac{PQ}{12}     [∵ Sin 30° = \frac{1}{2}]

\frac{12}{2}=PQ

PQ=6

∴ Required Values of PQ = 6 and QR = 6√3

**For more details please see the attachment**

______________________________

              //Hope it will Helped You//

        //Please Mark it as Brainliest//

Attachments:
Similar questions