In right angled triangle PQR,PQ=square root of 15,QR= square root of 9,PR= square root of 6,which angle is of 90⁰,
angleP
angleQ
angleR
Answers
Step-by-step explanation:
Formula used:
Curved surface area of cone =\pi\:r\:l=πrl square units
l^2=h^2+r^2l
2
=h
2
+r
2
In right ΔPQR,
PR^2=PQ^2+QR^2PR
2
=PQ
2
+QR
2
20^2=PQ^2+16^220
2
=PQ
2
+16
2
400=PQ^2+256400=PQ
2
+256
400-256=PQ^2400−256=PQ
2
PQ^2=144PQ
2
=144
PQ=\sqrt{144}PQ=
144
PQ=12\:cmPQ=12cm
case(i): when the triangle is revolving about the side PQ
Curved surface area of cone =\pi\:r\:l=πrl
Curved surface area=\pi\:(16)\:(20)=π(16)(20)
case(ii): when the triangle is revolving about the side QR
Curved surface area of cone =\pi\:r\:l=πrl
Curved surface area=\pi\:(12)\:(20)=π(12)(20)
Now,
\frac{C.S.A(i)}{C.S.A(ii)}
C.S.A(ii)
C.S.A(i)
=\frac{\pi\:(16)\:(20)}{\pi\:(12)\:(20)}=
π(12)(20)
π(16)(20)
=\frac{16}{12}=
12
16
=\frac{4}{3}=
3
4
C.S.A(i) : C.S.A(ii) = 4:3
Answer:
angle R
Explanation:
angle R
follow on Instagram @thought_deep_