In right angled ∆TSU, TS=S, angle S=90°,SU=12 then find sin T , cos T , tan T. Similarly find sin U, cos U, tan U.
anyone present then answer fast..!!
Answers
Corrected question:
In a right-angled ∆TSU, TS = 5, angle S = 90°, SU = 12 then find sinT, cosT, tanT. Similarly find sinU, cosU, tanU.
Answers:
- sinT = 12/13
- cosT = 5/13
- tanT = 12/5
- sinU = 5/13
- cosU = 12/13
- tanU = 5/12
Step-by-step explanation:
In ΔTSU:
∠TSU = 90°, On applying Pythagoras' theorem we get:
⇒ Hypotenuse² = Altitude² + Base²
⇒ TU² = TS² + SU²
⇒ TU² = (5)² + (12)²
⇒ TU² = 25 + 144
⇒ TU² = 169
⇒ TU = √169
⇒ TU = ±13
Lengths can't be negative, therefore TU = 13.
Now, we'll have to find the values of sinT, cosT, tanT, sinU, cosU and tanU. We'll be using trigonometric ratios to find their values.
We know that,
Let θ (the angle), be equal to ∠T.
SU = 12, and TU = 13, on substituting these values we get,
Similarly, let θ (the angle) be equal to ∠U.
TS = 5, and TU = 13, on substituting these values we get,
We also know that,
Let θ (the angle), be equal to ∠T.
TS = 5, and TU = 13, on substituting these values we get,
Similarly, let θ (the angle) be equal to ∠U.
SU = 12, and TU = 13, on substituting these values we get,
We also know that,
Let θ (the angle) be equal to ∠T.
SU = 12, and TS = 5, on substituting these values we get,
Similarly, let θ (the angle) be equal to ∠U.
TS = 5, and SU = 12, on substituting these values we get,
Hence solved.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
- REFER TO ATTACHMENT
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬