In SABC PQR, find PR.
2 som
4cm
B
Answers
Answered by
0
Answer:
In triangle ABC and triangle PQR we have :
\frac{AB}{PQ}=\frac{4}{6}=\frac{2}{3}
PQ
AB
=
6
4
=
3
2
\frac{BC}{QR}=\frac{7}{10.5}=\frac{70}{105}=\frac{2}{3}
QR
BC
=
10.5
7
=
105
70
=
3
2
<B=<Q so the two triangles are similar by SAS therem.In similar triangles sides are in proportion.
a)Let PR=x.AC=8cm .Forming the proportion in similar triangles :
\frac{4}{6}=\frac{8}{x}
6
4
=
x
8
Cross multiplying:
4x=48 or x=12.
b) In similar triangles the ratio of area is equal to square of ratio of proportional sides.
\frac{Area of triangle ABC}{Area of triangle PQR}=(\frac{4}{6} )^{2}=\frac{16}{36}=\frac{4}{9}
AreaoftrianglePQR
AreaoftriangleABC
=(
6
4
)
2
=
36
16
=
9
4
Step-by-step explanation:
hope this helps pls mark as brainliest
Similar questions
Math,
4 months ago
Physics,
4 months ago
Biology,
8 months ago
Math,
8 months ago
CBSE BOARD XII,
1 year ago