Physics, asked by nitchandpara1203, 10 months ago

in simple harmonic motion, velocity is alpha and acceleration is bita, so A= ? and the answer is √α^2y-βy^2/β​

Answers

Answered by nirman95
46

Answer:

An object is performing SHM , with instantaneous Acceleration β and instantaneous velocity being α

Now , we need to find a relationship between Amplitude , Acceleration and velocity .

acc. =  -  { \omega}^{2} y =  \beta

velocity =   \omega \sqrt{ {A}^{2} -  {y}^{2}  }  =  \alpha

Putting the value of Velocity in terms of angular frequency in the acceleration equation :

 \beta  =  -   \bigg \{\dfrac{ { \alpha }^{2} }{ {A}^{2} -  {y}^{2}  } \bigg \} y

Transposing to other sides :

  =  > {A}^{2}  -  {y}^{2}  =   - \dfrac{ { \alpha }^{2} y}{ \beta }

 =  >  {A}^{2}  =  {y}^{2}   -  \dfrac{ { \alpha }^{2}y }{ \beta }

 =  >  A  =  \sqrt{ {y}^{2}   -  \dfrac{ { \alpha }^{2}y }{ \beta } }

So final answer :

 \boxed{ \red{ \huge{ \bold{A  =  \sqrt{ {y}^{2}   -  \dfrac{ { \alpha }^{2}y }{ \beta } }}}}}

Answered by Saby123
38

</p><p>\huge{\tt{\pink{Hello!!!}}}

  • An object is performing SHM ,

  • Instantaneous Acceleration is β

  • Instantaneous velocity is α

</p><p>\tt{\red{ Relationship \:Between\: Amplitude \:, Acceleration\: And\: Velocity\: - }}

\mathfrak{\orange{Acceleration = - {\omega}^{2}y=\betaacc.=−ω}}

</p><p>\tt{\purple{Velocity=\omega\sqrt{{A}^{2} - {y}^{2}}=\alphavelocity = ω}}

</p><p>\tt{\blue{ Velocity\: in\: terms \:of \:angular\: frequency \: - }}

</p><p>\mathfrak {\orange{\beta = - \bigg \{\dfrac{ { \alpha }^{2} }{ {A}^{2} - {y}^{2} } \bigg \}}}

</p><p>\mathfrak {\red{= &gt; {A}^{2} - {y}^{2} = - \dfrac{ { \alpha }^{2} y}{ \beta }}}

</p><p>\mathfrak {\green{= &gt; {A}^{2} = {y}^{2} - \dfrac{ { \alpha }^{2}y }{ \beta }}}

</p><p>\tt{\orange{= &gt; A = \sqrt{ {y}^{2} - \dfrac{ { \alpha }^{2}y }{ \beta } }}}</p><p>

</p><p>\fbox{ \purple{ \huge{ \bold{A = \sqrt{ {y}^{2} - \dfrac{ { \alpha }^{2}y }{ \beta } }}}}}

Similar questions