in sin A =a-b/a+b find tan A
Answers
✠ Question : If sin A = (a - b)/(a + b). Find tan A
✠ Given : sin A = (a - b)/(a + b)
✠ To Find : Value of tan A
✠ Answer : tan A = (a - b)/(2√(ab))
✠ Explanation : ⤵️ (See Down)
________________________________________
We Know : sin A = Perpendicular/Hypotenuse
We are asked to Find Value of : tan A
Assume a Triangle ABC, Right angled at B , Where :
- Perpendicular = AB
- Base = BC
- Hypotenuse = AC
We also know : tan A = Perpendicular/Base
sin A = Perpendicular/Hypotenuse
⇒ (a - b)/(a + b) = Perpendicular/Hypotenuse
Comparing this , We get :
- Perpendicular = (a - b)
- Hypotenuse = (a + b)
- To Find tan A, we need to have values of Perpendicular and Base, We have Perpendicular Value but we need to find the value of Base.
To Find Base, Use Pythagoras Theorem :
- In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
(Hypotenuse)² = (Perpendicular)² + (Base)²
⇒ (a + b)² = (a - b)² + (Base)²
Using Algebraic Identities
⇒ a² + b² + 2ab = a² + b² - 2ab + (Base)²
Adding 2ab to both Sides
⇒ a² + b² + 2ab + 2ab = a² + b² - 2ab + (Base)² + 2ab
⇒ a² + b² + 4ab = a² + b² + (Base)²
Subtracting a² from both Sides
⇒ a² + b² + 4ab - a² = a² + b² + (Base)² - a²
⇒ b² + 4ab = b² + (Base)²
Subtracting b² from both Sides
⇒ b² + 4ab - b² = b² + (Base)² - b²
⇒ 4ab = (Base)²
Taking Root on Both Sides
⇒ √(4ab) = √(Base)²
⇒ 2√(ab) = Base
Switch Sides
⇒ Base = 2√(ab)
- Now solve for tan A
tan A = Perpendicular/Base
⇒ tan A = (a - b)/(2√(ab))
________________________________________