Math, asked by akbar5026, 19 days ago

In some solution of milk, 60% is pure milk white 40% is water. 125L of pure milk is added to the
solution, the strength of milk becomes 20% Find the original quantity of the solution

Answers

Answered by XxLUCYxX
31

 \color{red} \bold{Given \: that: } \\  \\  \sf  \bull\: Amount \: of \: pure \: milk \: i n\: the \: solution \:  =  \: 60 \: \% \\  \\ \sf \:  \bull  \:  Amount \: of \: water \:  =  \: 40 \: \% \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \bull \: Amount \: of \: pure \: milk \: added \:  =  \: 125 \: L\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\ \sf \bull \: New \: strength \: of \: the \: milk \:  =  \: 20 \: \%\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\    \small\color{lime} \bold{To \: find :  \: Original \: quantity \: of \: the \: solution} \\  \\  \color{deeppink} \bold{Solution : } \\  \\  \sf \: Let \: the \: origina l\: quantity \: of \: the \: solution \: be \: x \: . \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \: So, \: quantity \:  \: milk \: in \: the \: new \: solution \:  =  \: 60\% \: of \: x \:  =  \:  \frac{60}{100}   \: \times \:  x  \:  =  \:  \frac{3x}{5}  \\  \\  \sf \: Quantity \: of \: milk \: in \: the \: pure \: milk \: solution \:  =  \: 125 \: L  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \: So \: quantity \: of \: milk \: in \: the \: new \: solution \:  =  \:  \frac{3x}{5}  \:  +  \: 125 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\  \sf \: Total \: quantity \: of \: new \: solution \:  =  \: original \: quantity \:  +  \: 125 \: L  \:  =  \: x \:  +  \: 125 \\  \\ \sf \: Percentage \:o f \: milk \:i n \: the \: new \: solution \:  =  \:  \frac{Quantity \: of \: milk}{Total \: quantity}  \:  \times  \: 100 \: \% \:  \:  \:  \: \\  \\  \sf \:     \frac{ \frac{3x}{5} \:  +  \: 125 }{x \:  +  \: 125}  \:  \times  \: 100 \: \%  \\

 \sf \color{skyblue} \:This \: is \: equal \: to \: 20  \: \% \:  \: (given) \\  \\  \sf \: 20 \: \% \:  =  \:\frac{ \frac{3x}{5} \:  +  \: 125 }{x \:  +  \: 125}  \:  \times  \: 100 \: \%  \\  \\   \color{aqua}\sf \:  { \underline{ Cancel \: \% \: from \: both \:the \: side\: and \: transpose \: 100 \: to \: the \: left :  }} \\  \\  \sf \:  \frac{20}{100}  \:  =  \:    \frac{ \frac{3x}{5} \:  +  \: 125 }{x \:  +  \: 125} \\  \\  \sf \:  \frac{1}{5}   \:  =  \: \frac{ \frac{3x}{5} \:  +  \: 125 }{x \:  +  \: 125}  \\  \\  \sf \: Cross \:  Multiplying, \\  \\  \sf \: x \:  +  \: 125 \:  =  \:  \left( \frac{3x}{5}  \:  +  \: 125 \:  \right) \:  \times  \: 5 \\  \\  \sf \: Solve \: the \: brackets, \:  \\  \\ \sf \: x \:  +  \: 125 \:  =  \: 3x \:  +  \: 625 \\  \\  \sf \: Now, \: transpose \: x \: to \: the \: right \: and \: 625 \: to \: the \: left, \\  \\  \sf \: 125 \:  -  \: 625 \:  =  \: 3x \:  -  \: x \\  \\  \sf \:  - 500 \:  =  \: 2x \\  \\  \sf \:  \implies \: 2x \:  =  \:  - 500 \\  \\  \sf \: x \:  =  \:  \frac{ - 500}{2}  \\  \\  \sf \: x \:  =  \:  - 250 \\  \\  \sf  \color{gold}\: Hence, \: the \: original \: quantity \: of \: the \: solution \: was \: 250 \:  L  . \: Negative \: shows \: that \: the  \\  \\  \color{gold} \sf \: 125 \: L \: milk \: was \: removed \: for m\: the \: solution. \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:   \:

Similar questions