Math, asked by nukalmukthasre, 9 months ago

In square ABCD, IF AB = (5x + 4) cm, BC = (7x - 10)cm.
Find the value of x and length of AD.

Answers

Answered by Anonymous
607

 \sf  \large \red{\underline{ Question:-}}\\\\

  • In square ABCD, IF AB = (5x + 4) cm, BC = (7x - 10)cm.Find the value of x and length of AD.

 \\\\\sf  \large \red{\underline{Given:-}}\\\\

  •  \sf \: AB = (5x + 4) cm,

  •  \sf \: BC = (7x - 10)cm.

 \\\\\sf  \large \red{\underline{To   \: Find:-}}\\\\

  •  \sf Find \:  the \:  value  \: of  \: x  \: and \:  length  \: of  \: AD.

 \\\\\sf  \large  \red{\underline{Solution :-  }}\\\\

 \sf \: In  \: square  \: ABCD, \\ \\ \sf \to \:  AB = BC = CD = DA \\  \\  \sf \green {then} \\  \\  \sf \to \: 5x + 4 = 7x - 10 \\  \\  \sf \to \: 2x = 14 \\  \\  </p><p> \text{ \underline{  \sf\orange{on transposing we get : }}} \\  \\  \sf \to \: 5x - 7x = - 10 - 4 \\  \\  \sf \to \:  - 2x =  - 14x \\  \\  \sf \to \cancel{ - }2x = \cancel{ - }14 \\  \\  \sf \to\sf \to \: x =  \frac{14}{2}  \\  \\  \sf \to \: x \:  =  \frac{ \cancel{14}}{ \cancel{2}}  \\  \\  \bf \to \purple{x \:  = 7} \\  \\  \sf \to \:  AB= 5x  + 4 \\  \\ </p><p> \sf \to \:  AB= 5 x 7 + 4 \\  \\ </p><p> \sf \to AB = 35 + 4 \\  \\ </p><p> \sf \to AB= 39 \\   \underline{ \blue{ \sf \: we \: know :AB = BC = CD = DA }} \\  \\  \sf \to \: AB =AD \\  \\  \sf \to \pink{AD \:  = 39}</p><p>

Answered by alokk32316
3

Answer:

Thanks for this question

Similar questions