in the ∆ABC ,angle abc= 60° , angle acb=45° and bc=10cm find the altitude AD of the triangle.
PLEASE DON'T GIVE SILLY ANSWERS IT'S URGENT!
Answers
Answer:
AD = 6.36 cm
MARK AS BRAINLIEST ANSWER
Step-by-step explanation:
Tan60° = AD/BD
=> √3 = AD/BD
=> BD = AD/√3 ……….(1)
Tan45° = AD/CD
=> 1 = AD/CD
=> 1 = AD/(10-BD)
=> 10-BD = AD
=> AD = 10- BD ………(2)
=> By (1) & (2)
AD/ √3 = 10-BD
=> AD = 10√3 - √3BD
=> AD +√3BD = 10√3
= AD(1+√3) = 10√3
=> AD = 10√3 / (1+√3)
= AD = {10√3( 1-√3)} /{(1+√3)(1-√3)}
= AD = (10√3 - 30) / -2
=> AD = (30–10√3) / 2
=> AD = 15 - 5√3
=> AD = 15 - 5*1.732
=> AD = 15- 8.66
= AD = 6.36 cm ( approx)
Given : In the ∆ABC , ∠ABC= 60° , ∠ACB =45° and BC=10cm
To find : the altitude AD of the triangle.
Solution:
AD is altitude Hence ΔABD and ΔACD are right angle triangles
D lies on BC
∠ABC= 60° => ∠ABD = 60° and ∠ACD = ∠ACB = 45°
in ΔACD
Tan 45° = AD / CD
=> 1 = AD/CD
=> CD = AD
in ΔABD
Tan 60° = AD / BD
=> √3 = AD/BD
=> BD = AD/√3
CD + BD = 10 cm
=> AD + AD/√3 = 10
=> AD √3 + AD = 10√3
=> AD = 10√3 / ( √3 + 1)
=> AD = 10 √ 3 (√3 - 1) / (3 - 1)
=> AD = 10 (3 - √3 ) / (2)
=> AD = 5 (3 - √3 )
=> AD ≈ 6.34 cm
the altitude AD of the triangle is 5 (3 - √3 ) cm ≈ 6.34 cm
Learn More:
Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ
brainly.in/question/10480120
Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...
brainly.in/question/22239477
Maximum value of sin(cos(tanx)) is(1) sint (2)
brainly.in/question/11761816
evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...
brainly.in/question/2769339