Math, asked by roshnigupta, 1 year ago

In the above question we have to proof...... Plz answer me fast

Attachments:

Answers

Answered by siddhartharao77
1
Given :  \frac{(a +  \frac{1}{b})^m * (a -  \frac{1}{b})^n  }{(b +  \frac{1}{a})^m * (b -  \frac{1}{a} )^n}

= \ \textgreater \   \frac{ \frac{(ab + 1)^m}{b^m} *  \frac{(ab - 1)^n}{b^n} }{ \frac{(ab + 1)}{a^m} *  \frac{(ab-1)^n}{a^n}  }

= \ \textgreater \   \frac{ \frac{(ab - 1)^n(ab + 1)^m}{ b^{m + n} } }{ \frac{(ab + 1)^m (ab-1)^n}{ a^{m+n} } }

= \ \textgreater \   \frac{(ab + 1)^m(ab-1)^n a^{m + n} }{ b^{m + n} (ab + 1)^m(ab - 1)^n}

= \ \textgreater \   \frac{ a^{m + n} }{ b^{m + n} }

= \ \textgreater \   ( \frac{a}{b}) ^{m + n}



Hope this helps!
Similar questions