In the above sided figure , if QT perpendicular to PR , angle TQR = 40° and angle SPR = 30° , find x and y.
Attachments:
Answers
Answered by
34
In triangle QTR,
Angle Q + angle T + angle R = 180°
40°+ 90°+ x = 180°
130° + x = 180°
x= 180°-130°
x = 50°
In triangle PSR
Angle P +angle S + angle R = 180°
30° + angle S + 50° = 180°
80° + angle S = 180°
Angle S = 180°- 80°
Angle S = 100°
Angle PSQ + angle PSR = 180°( linear
pair )
y + 100° = 180°
y = 180° -100°
y = 80°
Answered by
5
Answer:
Step-by-step explanation:
Solution:-
In Δ QTR
∠ TQR + ∠ QRT + ∠ QTR = 180°
⇒ 40° + y + 90° = 180°
⇒ y = 180° - 130°
⇒ y = 50°
∠ QSP = ∠ SPR + ∠ SRP
Reason : Exterior angle = sum of interior angles
⇒ x = 30° + y
⇒ x = 30° + 50°
⇒ x = 80°
So, ∠ x = 80° and ∠ y = 50° Answer.
Read more on Brainly.in - https://brainly.in/question/726759#readmore
Similar questions