. In the adjacent Figure 5.42, if
seg AB || seg PQ , seg AB seg PQ,
seg AC || seg PR, seg AC seg PR
then prove that,
seg BC || seg QR and seg BC 3 seg QR.
B
R
Fig. 5.42
Answers
Answered by
13
Step-by-step explanation:
Given: seg AB∥ seg PQ, seg AB≅segPQ
So, ABQP is a parallelogram as the pair of opposite sides are congruent and parallel.
Thus, seg AP ∥ seg BQ, seg AP≅segBQ …..(1)
Similarly, seg AC∥ seg PR,segAC≅segPR
So, APRC is a parallelogram.
Thus, seg AP∥segCR,segAP≅segCR…..(2)
From ( 1 ) and (2) we have
seg BQ∥ seg CR
Also, seg BQ≅segCR
Thus, BQRC is a parallelogram as the pair of opposite sides are congruent and parallel.
Therefore, seg BC∥ seg QR and segBC≅segQR as BQRC is a parallelogram.
Similar questions