In the adjacent figure, it is given that AB =AC, ∠BAC=36°,∠ADB=45° and ∠AEC = 40°. Find (i) ∠ABC (ii) ∠ACB (iii) ∠DAB (iv) ∠EAC.
Answers
(ii). 72°
(iii). 27°
(iv). 32°
Answer:
∠ACB=72° , ∠ABC =72° , ∠DAB=27° and ∠EAC=32°
Step-by-step explanation:
In ΔABC
AB = AC
Since we know that the opposite angles of equal sides are equal
So, ∠ACB=∠ABC ---1
Now By angle sum property of triangle :
∠ABC+∠ACB +∠BAC = 180°
using 1
∠ABC+∠ABC +∠BAC = 180°
2∠ABC +36° = 180°
2∠ABC = 180°-36°
2∠ABC = 144°
∠ABC = 72°
So, ∠ACB=∠ABC =72°
Now ∠BAC+∠ACB=∠ABD (exterior angle property of triangle )
36°+72° =∠ABD
108° =∠ABD
In ΔABD
∠ADB+∠ABD+∠DAB=180° (Angle sum property of triangle )
45°+108°+∠DAB=180°
153°+∠DAB=180°
∠DAB=180° -153°
∠DAB=27°
Now ∠BAC+∠ABC=∠ACE (exterior angle property of triangle )
36°+72° =∠ACE
108° =∠ACE
In ΔACE
∠AEC+∠ACE+∠EAC=180° (Angle sum property of triangle )
40°+108°+∠DABEAC=180°
148°+∠EAC=180°
∠EAC=180° -148°
∠EAC=32°
Hence ∠ACB=72° , ∠ABC =72° , ∠DAB=27° and ∠EAC=32°