Math, asked by gahlotkhushi5795, 10 months ago

In the adjoining figure , a tower AB is 30 m high and BC its shadow on the ground is 20root3 long . Find the sun's altitude

Answers

Answered by Anonymous
151

Correct Question :

A tower AB is 20 m high and BC , its shadow on ground, is 20√3 m long. Find the sun's altitude.

AnswEr :

Refrence of Image is in the Diagram :

\setlength{\unitlength}{1.3 pt}\begin{picture}(100,100)(0,0)\put(0,10){\line(1,0){95}}\put(40,10){\line(0,1){55}}\put(95,10){\line(-1,1){85}}\multiput(0,65)(6,0){7}{\line(1,0){3}}\qbezier(90,15)(80,20)(82,10)\put(10,95){\circle*{20}}\put(24,40){$\sf{20\:m}$}\put(15,50){$\bf{Tower}$}\put(60,0){$\sf{20\sqrt{3}\:m}$}\put(10,105){$\bf Sun$}\put(40,3){$\sf B$}\put(40,68){$\sf A$}\put(95,3){$\sf C$}\end{picture}

Here :

  • AB (Tower) = 20 metre
  • BC (Shadow) = 20√3 metre
  • ∠ ACB (Sun's Altitude) = ?

\rule{150}{1}

\underline{\bigstar\:\textsf{In Triangle ABC, Using Trigonometric Value :}}

\dashrightarrow\:\:\tt \tan(\theta) =\dfrac{Perpendicular}{Base}\\\\\\\dashrightarrow\:\:\tt \tan(ACB)=\dfrac{AB}{BC}\\\\\\\dashrightarrow\:\:\tt \tan(ACB)=\dfrac{20}{20\sqrt{3}}\\\\\\\dashrightarrow\:\:\tt \tan(ACB)= \dfrac{1}{\sqrt{3}}\\\\{\scriptsize\qquad\bf{\dag}\:\:\sf{\tan(30\degree)=\dfrac{1}{\sqrt{3}}}}\\\\\dashrightarrow\:\:\tt \tan(ACB)=\tan(30\degree)\\\\\\\dashrightarrow\:\: \underline{\boxed{\tt \angle\:ACB = 30 \degree}}

\therefore\:\underline{\textsf{Hence, Sun's Altitude is at \textbf{30\degree}}}.

\rule{200}{2}

\bigstar\:\sf Trigonometric\:Values :\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D$\hat{e}$fined\end{tabular}}

Answered by Anonymous
25

Answer:

  • Height of the tower = AB = 20 m

  • Length of the shadow = BC = 20√3 m

  • The Altitude of the Sun = < ACB

⇒ tan <ACB = AB/CB

= 20/20√3

= 1/√3

⇒ tan <ACB = tan 30°

<ACB = 30°

Similar questions