in the adjoining figure AB= AC, CP || BA and AP is the bisector of angle CAD prove that angle PAC = angle BCA and ABCD is a parallelogram
This was the first question this is the second question
The diagonals AC and BD of a rhombus intersect each other at O prove that AB2+BC2+CD2+DA2=4 (OA2+OB2)
Answers
Answered by
21
Solution 02
Diagonal's of Rhombus bisect at 90° and AO=OC & BO=OD
Apply pythogorous
AB²=AO²+BO²
BC²=BO²+OC²
CD²=OD²+OC²
AD²=OD²+AO²
AB²+BC²+CD²+AD²= [2AO²+2BO²+2CO²+2DO²]
AB²+BC²+CD²+AD²= 2[(AO+OC)²-2AO.OC+(BO+OD)²-2BO.OD]
AB²+BC²+CD²+AD²=2[(4OA²)-2OA²+(4OB²)-2OB²]
AB²+BC²+CD²+AD²=2[2OA²+2OB²]
AB²+BC²+CD²+AD²=2×2[OA²+OB²]
AB²+BC²+CD²+AD²=4[OA²+OB²]
Diagonal's of Rhombus bisect at 90° and AO=OC & BO=OD
Apply pythogorous
AB²=AO²+BO²
BC²=BO²+OC²
CD²=OD²+OC²
AD²=OD²+AO²
AB²+BC²+CD²+AD²= [2AO²+2BO²+2CO²+2DO²]
AB²+BC²+CD²+AD²= 2[(AO+OC)²-2AO.OC+(BO+OD)²-2BO.OD]
AB²+BC²+CD²+AD²=2[(4OA²)-2OA²+(4OB²)-2OB²]
AB²+BC²+CD²+AD²=2[2OA²+2OB²]
AB²+BC²+CD²+AD²=2×2[OA²+OB²]
AB²+BC²+CD²+AD²=4[OA²+OB²]
Answered by
16
Hiya
Many questions
Thanks
Many questions
Thanks
Attachments:
Similar questions