Math, asked by Thanked, 3 months ago

In the adjoining figure, AB and CD are two parallel chords and O is the centre. If the radius of the circle is 15 cm, find the distance MN between the two chords of length 24 cm and 18 cm respectively.​

Attachments:

Answers

Answered by Anonymous
102

\huge{\red{\underline{\overline{ᴀ}}}}{\color{orange}{\underline{\overline{ɴ}}}}{\color{gold}{\underline{\overline{s}}}}{\color{green}{\underline{\overline{ᴡ}}}}{\blue{\underline{\overline{ᴇ}}}}{\pink{\underline{\overline{ʀ}}}}\star

 \odot \:  \:  \:  \:  \:  \: \red{ \underline{ \underline{ \green{ \bf{Length  \: of  \: MN \:  is  \: 21cm.}}}}}

Step-by-step explanation:

Given :

\sf where \begin{cases} & \sf{length \: of \: AB = 24cm} \\ \\ & \sf{ length \: of \: CD = 18cm} \\ \\ & \sf{radius \: of \: the \: circle = 15cm}  \end{cases}

To Find :

  • the length of MN

Solution :

 \underline{ \frak{ \dag \: as \: we \: know}}

 \boxed{ \pink{ \sf{Pythagoras  \: theorem  \implies \: AC² = AB² + BC²}}}

__________________________________________

The ∆CNO is a right angle triangle

And N is the mid-point of CD

 \\  \therefore \sf \frac{1}{2} CD=CN \\

 \\  \sf \to \frac{1}{2}  \times 18 =CN \\

 \\  \sf \to \: CN = 9cm \\

By using Pythagoras theorem

 \\  \dashrightarrow \sf \: CO² = CN² + NO²  \\  \\

 \\  \dashrightarrow \sf \:  {15}^{2}  =  {9}^{2}  +  NO² \\  \\

 \\  \dashrightarrow \sf \: 225 = 81 + NO² \\  \\

 \\  \dashrightarrow \sf \: NO² = 225 - 81 \\  \\

 \\  \dashrightarrow \sf \: NO² = 144 \\  \\

 \\  \dashrightarrow \sf \: NO =  \sqrt{144}  \\  \\

 \\  \dashrightarrow \sf \: NO = 12 \\  \\

Therefore, the Length of NO is 12cm

The ∆AOM is a right angle triangle

And M is the mid-point of AB

 \\  \therefore \sf \frac{1}{2} AB = AM \\

 \\  \sf \to \frac{1}{2}  \times 24 = AM  \\

 \\  \sf \to \: AM = 12cm \\

By Using Pythagoras Theorem

 \\  \sf \dashrightarrow \: OA² = OM² + MA² \\  \\

 \\ \dashrightarrow \sf \:  {15}^{2}  = OM² +  {12}^{2}  \\  \\

 \\  \dashrightarrow \sf \: 225 = OM²   +  144 \\  \\

 \\  \dashrightarrow \sf \: OM² = 225 - 144 \\  \\

 \\  \dashrightarrow \sf \: OM² = 81 \\  \\

 \\  \dashrightarrow \sf \: OM =  \sqrt{81}  \\  \\

 \\  \dashrightarrow \sf \: OM = 9 \\  \\

Therefore, the length of OM is 9cm

Therefore, the Length of MN

= Length of ON + Length of OM

 = 12 + 9

 =   \large{\underline{ \boxed{ \frak{ \purple{21cm}}}} \star}

__________________________________________

 \underline{ \text{Therefore, the Length of MN is 21cm.}}

Attachments:
Similar questions